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Abstract

This paper documents a systematic study into the variance growth of transformed twin prime values
k= (p+1)/6 for twin prime pairs (p,p 4 2). Initial observations suggested anomalous growth (~ N'-!),
conflicting with theoretical expectations. Through systematic analysis, we resolved this paradox by
identifying normalization artifacts, ultimately demonstrating quadratic growth (~ N?) of raw variance.
The study highlights the importance of careful data interpretation in numerical number theory and
provides new empirical insights into the twin prime distribution.

1 Introduction

We model the distribution of twin primes—prime pairs (p,p + 2). While the twin prime conjecture (the
infinitude of such pairs) remains open, Hardy-Littlewood’s k-tuple conjecture provides heuristics for their
density:

N
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where Cs =~ 0.66016 is the twin prime constant.
Our investigation focuses on the transformed variable:
_pt+1

k
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which centers and scales the lower twin prime p. We examine the variance Var(k) over increasing bounds
N, initially observing perplexing growth patterns that ultimately led to deeper insights.

We reference classical results on twin prime density [1], and modern estimates on prime distributions and
gap behavior [2, 3], to provide context for our empirical findings.

2 Methodology

2.1 Data Generation

We employed a high-performance sieve algorithm to generate twin primes up to N = 10°:

1. Implemented segmented sieve of Eratosthenes in Python
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. Identified twin pairs (p,p + 2) with p > 3

w

. Computed k-values for all valid pairs

4. Stored results for batch processing



2.2 Variance Computation

For each upper bound N, we calculated:

Var(k; N) = 1 Z (kp — ]:IN)Q
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where T is the set of twin primes up to N and ky is the mean k-value.

2.3 Analysis Techniques
e Log-log regression to estimate growth exponents

e Pointwise slope analysis: a(N) = ddl?rx%r

e Comparative analysis of raw vs. normalized variance

3 Empirical Observations

Table 1: Variance Growth with Increasing N

N Var(k) Var(k)/N?

105 2.15 x 108 0.0215
106 2.78 x 1010 0.0278
107 3.02 x 10*2 0.0302
108 3.17 x 1014 0.0317
109 3.28 x 106 0.0328
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Figure 1: Log-log plot of raw variance Var(k) versus upper bound N for twin primes (p,p + 2). The dashed
red line shows a quadratic fit (Var(k) ~ 0.033N?2), with the empirical constant ¢ ~ 0.033 derived from Table

1.



4 The Paradox and Resolution

4.1 Initial Anomaly

Early analysis of normalized variance suggested:

Var (k)
T

~ Nl.l

(4)

This contradicted the expected linear growth suggested by uniform distribution heuristics in prime gaps.

4.2 The Breakthrough

Plotting raw variance revealed the true relationship:

Var(k) ~ ¢cN?  with ¢~ 0.033

The apparent anomaly arose from the growth rate of twin prime counts:

N Var(k) 9
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4.3 Pointwise Analysis
The local growth exponent:
dIn Var
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Figure 2: Convergence of pointwise exponents to 2, confirming quadratic growth



5 Mathematical Interpretation

The quadratic growth emerges naturally from the scaling of k:

p+1 N
=TS ®)
Var(k) ~ E[k?] — E[k]? ~ ];—6 - (f;) = JZ—S (9)

This theoretical prediction (4—18 ~ 0.0208) aligns reasonably with our empirical constant (= 0.033), with
the difference attributable to non-uniform twin prime distribution.
5.1 Reconciling the Variance Constants

The two theoretical approaches yield:

. g—;: From direct integration of E[k?] (Sec. 5.2)

. %: From scaling k ~ N/6 (Eq. 9)

The discrepancy arises because the first method treats E[k]? as negligible for large N, while the second

accounts for its exact value —(&)2. The correct asymptotic constant is ¢ = with empirical deviations

12 48
(c ~ 0.033) reflecting:
e Non-uniform twin prime clustering

e Lower-order terms in E[k?]

e Finite-N effects in our data (N < 10%)

5.2 Theoretical Derivation of the Variance Constant

We model the variable

for twin primes (p,p + 2) where p < N, and study the asymptotic growth of the variance
Var(k) = E[k?] — E[k]%.

Assuming twin primes are distributed with density proportional to the Hardy-Littlewood estimate,

roodt
2 (l’) ~ 202/2 (log t)23

we model their distribution using the continuous density

1
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Expanding k?:
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The expected value of k2 becomes

1 N1 1 1 dp
21 a2 _
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where Z(N) = f2N (1()‘;71;)2 serves as the normalizing constant.
Using known asymptotic estimates:

N p2 N3
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we obtain:
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Since Z(N) ~ ﬁ, we find:
N2
E[k?] ~ % + lower-order terms.

Similarly, the expectation of k is

1 N dp 1 N
B = 5200 . ) on? ™ 6 <<1ogN>2 * 1) ’

N2
[k ?~ 1 A0
36log" N
which is asymptotically negligible compared to E[k?].
Thus, the variance satisfies

so that

N2
Var(k) ~ % (upper bound),
while the exact calculation in Eq. (9) yields 11—82. The difference arises because this derivation neglects the
—E[k]? term’s higher-order contributions.
The empirical ¢ =~ 0.033 exceeds both values, suggesting:

e Stronger clustering than predicted by Hardy-Littlewood
e Non-trivial correlations in twin prime gaps

e Finite-IV effects dominating below N — oo

6 Conclusion

Our investigation yielded several key insights:
e The variance of k-values grows quadratically as ~ 0.033N2
e Initial anomalous scaling resulted from improper normalization
e Twin prime counting modulates normalized variance behavior
e The methodology serves as a case study in numerical verification

This work demonstrates how careful empirical analysis can both resolve apparent paradoxes and reveal
new patterns in prime number theory. More broadly, it serves as a cautionary example for number-theoretic
statistics: normalization by sparse counts (e.g., |Tn| ~ N/(log N)?) can systematically distort perceived
scaling laws, necessitating raw-variance comparisons and null-model tests. Future directions could explore
the following:

e Higher moments of the k-distribution

e Comparisons with other prime constellations
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