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Abstract

In this paper, we assume that the explicit abc conjecture of Alan Baker (2004)
is true, we give the proof that c < rad2(abc) is true, it is one of the keys to
resolve the mystery of the abc conjecture. Some numerical examples are given.
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1 Introduction and notations

Let a be a positive integer, a =
∏

i a
αi
i , ai prime integers and αi ≥ 1 positive integers.

We call radical of a the integer
∏

i ai noted by rad(a). Then a is written as:

a =
∏
i

aαi
i = rad(a).

∏
i

aαi−1
i (1)

We denote:
µa =

∏
i

aαi−1
i =⇒ a = µa.rad(a) (2)

The abc conjecture was proposed independently in 1985 by David Masser of the Uni-
versity of Basel and Joseph Œsterlé of Pierre et Marie Curie University (Paris 6) [1].
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It describes the distribution of the prime factors of two integers with those of its sum.
The definition of the abc conjecture is given below:
Conjecture 1. (abc Conjecture): For each ϵ > 0, there exists K(ϵ) such that if
a, b, c positive integers relatively prime with c = a+ b, then :

c < K(ϵ).rad1+ϵ(abc) (3)

where K is a constant depending only of ϵ.

We know that numerically,
Logc

Log(rad(abc))
≤ 1.629912 [2]. It concerned the best

example given by E. Reyssat [2]:

2 + 310.109 = 235 =⇒ c < rad1.629912(abc) (4)

A conjecture was proposed that c < rad2(abc) [3]. In 2004, Alan Baker [1], [4] proposed
the explicit version of the abc conjecture namely:
Conjecture 2. Let a, b, c be positive integers relatively prime with c = a+ b, then:

c <
6

5
R
(LogR)ω

ω!
(5)

with R = rad(abc) and ω = ω(abc) the number of distinct prime factors of abc.
In the following, we assume that the conjecture of Alan Barker is true, I will give an
elementary proof of the conjecture c < rad2(abc) that constitutes one key to resolve
the open abc conjecture. We give also some numerical examples.

2 The Proof of the c < R2 Conjecture

Proof. : Let one triplet (a, b, c) of positive integers relatively prime with c = a+b and :

c <
6

5
R
(LogR)ω

ω!

Let A =
(LogR)ω

ω!
, rad(a) =

∏
i=1,I

ai, rad(b) =
∏

j=1,J

bj , and c =
∏

l=1,L

cl, then ω =

I + J + L. we obtain:

ω ≪ (LogR =
∑
i=1,I

Logai +
∑
j=1,J

Logbj +
∑
l=1,L

Logcl)

We can write R as:

R = eLogR = 1 + LogR+
(LogR)2

2!
+ · · ·+A+

+∞∑
k=ω+1

(LogR)k

k!
(6)
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As
(LogR)n

n!
<

(LogR)n+1

(n+ 1)!
for n < LogR and ω ≪ LogR ⇒ ω + 1 < LogR, ω + 2 <

LogR, it follows :

(LogR)ω

ω!
<

(LogR)ω+1

(ω + 1)!
<

(LogR)ω+2

(ω + 2)!
=⇒ 2A < R :

2A < 1+LogR+
(LogR)2

2!
+· · ·+(LogR)ω

ω!
+
(LogR)ω+1

(ω + 1)!
+
(LogR)ω+2

(ω + 2)!
+

+∞∑
k=ω+3

(LogR)k

k!

I can take A <
5

6
R, then:

c <
6

5
R.

(LogR)ω

ω!
=

6

5
R.A ≤ 6

5
R.

5

6
R =⇒ c < R2 (7)

The proof of the conjecture c < R2 is finished.

Q.E.D

We give below some numerical examples.

3 Examples

3.1 Example 1. of Eric Reyssat

We give here the example of Eric Reyssat [1], it is given by:

310 × 109 + 2 = 235 = 6436 343 (8)

a = 310.109 ⇒ µa = 39 = 19 683 and rad(a) = 3× 109,
b = 2 ⇒ µb = 1 and rad(b) = 2,
c = 235 = 6436 343 ⇒ rad(c) = 23. Then R = rad(abc) = 2×3×109×23 = 15 042 =⇒
R2 = 226 261 764.

ω = 4 =⇒ A =
(LogR)4

4!
= 356.64, R2 >

6

5
R
(LogR)ω

ω!
= 6 437 590.238 > (c =

6436 343).
A

R
≈ 0.06 ≪ 5

6
= 0.83.

3.2 Example 2. of Nitaj

See [5]:

a = 1116.132.79 = 613 474 843 408 551 921 511 ⇒ rad(a) = 11.13.79

b = 72.412.3113 = 2477 678 547 239 ⇒ rad(b) = 7.41.311

c = 2.33.523.953 = 613 474 845 886 230 468 750 ⇒ rad(c) = 2.3.5.953

R = rad(abc) = 2.3.5.7.11.13.41.79.311.953 = 28 828 335 646 110
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=⇒ R2 = 831 072 936 124 776 471 158 132 100 > (c = 613 474 845 886 230 468 750)

ω = 10 =⇒ A =
(LogR)10

10!
= 225 312 992.556 =⇒

R2 >
6

5
R
(LogR)ω

ω!
= 7 794 478 289 809 729 132 015, 590 > (c = 613 474 845 886 230 468 750),

A

R
= 7.815e− 6 ≪ 5

6
= 0.83

3.3 Example 3.

The example is of Ralf Bonse, see [2] :

25434.182587.2802983.85813163 + 215.377.11.173 = 556.245983

a = 25434.182587.2802983.85813163

b = 215.377.11.173

c = 556.245983

R = rad(abc) = 2.3.5.11.173.2543.182587.245983.2802983.85813163

R = 1.5683959920004546031461002610848e+ 33 =⇒
R2 = 2.4598659877230900595045886864952e+ 66

ω = 10 =⇒ A =
(LogR)10

10!
= 1 875 772 681 108.203 =⇒

R2 >
6

5
R
(LogR)ω

ω!
= 3.5303452259448631166310839830891e+ 45 >

c = 3.4136998783296235160378273576498e+ 44,
A

R
= 1.196e− 21 ≪ 5

6
= 0.83

4 Conclusion

Assuming that the explicit abc conjecture is true, we have given an elementary proof
that the c < R2 conjecture holds. We can announce the important theorem:
Theorem 3. Assuming the explicit abc conjecture of Alan Baker is true, then the
c < R2 conjecture is true.
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