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Abstract

This document introduces and investigates a criterion for defining ”pri-
mality” within the sequence of odd integers Ak = 2k + 1. The criterion
is based on the greatest common divisor (GCD) between a term Ak and
the preceding partial sums Sj = j2 + 2j of the same sequence. We for-
mally define the sequence, its partial sums, and the proposed primality
criterion. A proof is provided demonstrating that all standard prime num-
bers within the sequence are classified as ”prime” by this new definition.
Furthermore, computational observations suggest that all composite num-
bers in the sequence are classified as ”not prime,” including Carmichael
numbers, which are known for their pseudoprime properties. This leads
to a conjecture that the proposed criterion is equivalent to the standard
definition of primality for terms in this specific arithmetic progression.

1 Introduction

This document explores a unique definition of ”primality” applied to terms
within a specific arithmetic progression. We define the terms of the series and
its partial sums, then introduce a primality criterion based on the Greatest
Common Divisor (GCD) between terms and preceding partial sums. Finally,
we examine the relationship between this definition and the standard definition
of prime numbers.

2 Definitions

Definition 1 (The Sequence of Terms (Ak)). Let Ak be the sequence of odd
integers greater than or equal to 3, defined for k ∈ Z+ as:

Ak = 2k + 1

The sequence begins: 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, . . .

Definition 2 (The Sequence of Partial Sums (Sn)). Let Sn be the sum of the
first n terms of the sequence Ak. This sum can be expressed as a polynomial in
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n:

Sn =

n∑
i=1

(2i+ 1) = n2 + 2n

Derivation: Sn = 2
∑n

i=1 i +
∑n

i=1 1 = 2
(

n(n+1)
2

)
+ n = n(n + 1) + n =

n2 + n+ n = n2 + 2n.

Definition 3 (Prime Criterion). A term Ak from the sequence is defined as
”prime” if and only if for every integer j such that 1 ≤ j < k, the greatest
common divisor (GCD) of Sj and Ak is equal to 1. That is:

∀j ∈ {1, 2, . . . , k − 1} : gcd(Sj , Ak) = 1

Definition 4 (Not Prime Criterion). A term Ak from the sequence is defined
as ”not prime” if there exists at least one integer j such that 1 ≤ j < k for
which the greatest common divisor of Sj and Ak is greater than 1. That is:

∃j ∈ {1, 2, . . . , k − 1} : gcd(Sj , Ak) > 1

3 Relationship to Standard Prime Numbers

We now investigate how this definition of ”primality” aligns with the standard
definition of a prime number.

Proposition 1. If a term Ak is a standard prime number, then Ak is ”prime”
according to the criterion.

Proof. Let Ak = p be a standard prime number. We aim to demonstrate that
for every j such that 1 ≤ j < k, gcd(Sj , p) = 1.

We know that Sj = j(j + 2). For gcd(Sj , p) to be greater than 1, since p is
a prime number, it must be that p divides Sj . By Euclid’s Lemma, if p divides
j(j + 2), then p must divide j or p must divide (j + 2).

From the definition of Ak, we have Ak = 2k + 1 = p, which implies k =
(p− 1)/2. The range for j is 1 ≤ j < k, meaning 1 ≤ j < (p− 1)/2.

1. Consider the case where p divides j: If p divides j, then j must be a
multiple of p. Since j ≥ 1, this would imply j ≥ p. However, our condition
j < (p − 1)/2 implies j < p for all prime p ≥ 3. Specifically, for p = 3,
k = 1, so there are no j < 1. For p ≥ 5, (p − 1)/2 < p. Thus, j ≥ p
contradicts j < (p− 1)/2. Therefore, p cannot divide j.

2. Consider the case where p divides (j + 2): If p divides (j + 2),
then (j + 2) must be a multiple of p. Since j ≥ 1, j + 2 ≥ 3. This
would imply j + 2 ≥ p. However, from j < (p − 1)/2, we can deduce
j + 2 < (p − 1)/2 + 2 = (p − 1 + 4)/2 = (p + 3)/2. For any prime p > 3,
we have (p + 3)/2 < p. (e.g., for p = 5, (5 + 3)/2 = 4 < 5; for p = 7,
(7+3)/2 = 5 < 7). Thus, for p > 3, j+2 ≥ p contradicts j+2 < (p+3)/2.
Therefore, p cannot divide (j + 2).
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Since p cannot divide j and p cannot divide (j+2), it follows that p cannot divide
their product Sj = j(j + 2). Consequently, gcd(Sj , p) = 1 for all 1 ≤ j < k.
This concludes the proof that if Ak is a standard prime number, it satisfies the
”prime” criterion.

4 Observations on Composite Numbers

While the proposition above proves that all standard prime numbers within the
sequence Ak will be classified as ”prime” by the definition, it’s also insightful to
observe how composite numbers are classified.

Through computational checks of initial terms, we’ve observed that all com-
posite numbers of the form Ak = 2k + 1 are classified as ”not prime” by the
criterion.

• If Ak is a multiple of 3 (e.g., A4 = 9, A7 = 15, A10 = 21), then
gcd(S1, Ak) = gcd(3, Ak) = 3 > 1. Thus, all multiples of 3 are correctly
identified as ”not prime”.

• For other composite numbers, such asA12 = 25, which is 52: gcd(S3, A12) =
gcd(15, 25) = 5 > 1. Hence, A12 = 25 is ”not prime”.

• For A24 = 49, which is 72: gcd(S5, A24) = gcd(35, 49) = 7 > 1. Hence,
A24 = 49 is ”not prime”.

This pattern suggests that any odd composite number Ak will likely share a
common factor with at least one preceding partial sum Sj . This is because the
prime factors of Sj = j(j+2) cover an increasing range of integers as j increases,
making it probable to find a shared factor with any composite Ak.

5 Efficiency Against Carmichael Numbers

Carmichael numbers are composite numbers that are known for their pseudo-
prime properties; they satisfy the congruence relation of Fermat’s Little The-
orem for all bases coprime to them, often making them difficult to distinguish
from primes using certain probabilistic primality tests. We investigate how the
proposed criterion classifies these numbers.

All Carmichael numbers are odd and greater than 1, so they are terms in
our sequence Ak = 2k + 1. Let’s test the first few Carmichael numbers using
our criterion:

1. A280 = 561: The number 561 is a Carmichael number. It can be expressed
as A280 = 2(280) + 1. Its prime factorization is 3× 11× 17. We compute
gcd(S1, A280) = gcd(3, 561). Since 561 is divisible by 3, gcd(3, 561) = 3.
As gcd(3, 561) = 3 > 1, according to our criterion, A280 = 561 is classified
as ”not prime”.
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2. A552 = 1105: The number 1105 is a Carmichael number, and A552 =
2(552) + 1. Its prime factorization is 5 × 13 × 17. Consider j = 3, S3 =
32 +2(3) = 9+ 6 = 15. We compute gcd(S3, A552) = gcd(15, 1105). Since
15 = 3 × 5 and 1105 = 5 × 221, they share a common factor of 5. Thus,
gcd(15, 1105) = 5. As gcd(15, 1105) = 5 > 1, according to our criterion,
A552 = 1105 is classified as ”not prime”.

3. A864 = 1729: The number 1729 is a Carmichael number, and A864 =
2(864) + 1. Its prime factorization is 7 × 13 × 19. Consider j = 5, S5 =
52 + 2(5) = 25 + 10 = 35. We compute gcd(S5, A864) = gcd(35, 1729).
Since 35 = 5 × 7 and 1729 = 7 × 247, they share a common factor of
7. Thus, gcd(35, 1729) = 7. As gcd(35, 1729) = 7 > 1, according to our
criterion, A864 = 1729 is classified as ”not prime”.

These examples demonstrate that the proposed primality criterion successfully
classifies Carmichael numbers as ”not prime.” This provides further evidence for
the robustness and accuracy of the criterion in identifying composite numbers,
even those that exhibit pseudoprime behavior in other primality tests.

Conjecture 1. A term Ak is ”prime” by the criterion if and only if Ak is a
standard prime number.

Based on our analysis, the evidence strongly supports this conjecture. While
proving the converse (that if Ak is ”prime” by the criterion, then it must be a
standard prime number) requires a more rigorous number-theoretic argument
for all cases, the criterion appears to be a very effective filter for standard prime
numbers within the sequence 2k + 1.
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