A proof of the Collatz conjecture
by

Fabrice Trifaro

Abstract. Using a comprehensive approach, this paper aims to demonstrate, clearly and
rigorously, the validity of the Collatz conjecture. To this end, the original 3n+ 1 iteration
is reformulated by isolating the odd terms into sequences referred to as R-Cz sequences.
These sequences are analyzed through their structural properties and their distribution
among the odd natural numbers. As a first essential result, it is shown that they do not

admit non-trivial cycles: the only possible cycle is the trivial one, of value and length 1.

Two independent proofs that all R-Cz sequences converge are then presented. The first,
combinatorial in nature, relies on the finiteness of intervals that could possibly separate
terms of the sequences. The second, set-theoretic, is based on a contradiction between the
countability of the odd integers and the uncountable cardinality of the hypothetical di-
vergent R-Cz sequences. Both methods lead to the same conclusion: all Collatz sequences

eventually enter the cycle (1,4, 2).
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1 Introduction

First of all, let us define a Collatz sequence. Let {u,}nen be the sequence such that

ug = p, where peN*, and such that:

for neN*, u,, =

Un—1

5 if u,,_1 is even

{Sunl +1 ifu,_;is odd

According to the conjecture, there exists [EN* such that u; = 1, u;11 = 4, uj10 = 2, u113 =
1,44 = 4,445 = 2, and so on. In other words, from rank [ the sequence enters a cycle
that repeats the numbers 1,4,2 ad infinitum (see 2], [3], [4] and [6] for the background

of this conjecture). We can express this sequence in another way, indeed, if p is odd then

we have:
u; = 3p + 1 is even,
3p+1 T L 3p+1
UQZT, 1f ug 1s even then ug = 52
) 3p+1 .
until uy44, = i is odd.
200
Let :
3p+1
Vg = U1+ao = 2TO

Where q is the exponent corresponding to the number of times u; must be divided by 2

to obtain an odd number. Repeating the same process, we have:

Ul tap+1 = SUlta, + 1 1S even,

_ BUige, T 1 £ . b ~ BUige, +1
Ul+ag+1+1 = T’l Ul tag+1+1 18 even then uyyqo4142 = T’
.
3'LL1 +1
. - “+ag .
until 14004140, = ST is odd.
Let:
. . 3U1+a0 + 1
U1 = Ultap+ltar = T om

Where «; is the exponent corresponding to the number of times 144,41 must be divided
by 2 to obtain an odd number. By reformulating v, we have:
(B(Z)+1) 33p+1)+2%

v = =
1 201 2ap+ay




And by an easily verifiable recurrence (see Appendix 6.1), we obtain that for all [EN*:

-1

" 3L (3p+ 1) + Y31 (2= %)) 3L (3p+ 1) gl-1-i
1= —

1 1 1
2 im0 i 2 im0 i 0 22j:i+1 o

The resulting sequence {v; },en has all its values in 2N 4 1, and it is equal to the sequence
{tun }neny without the first term and the even-valued terms of the latter. Thus, the cycle
of length 3 and values (1,4,2) of the sequence {u,} corresponds to the cycle of length 1

and value (1) of the sequence {v;}.

If p is even, there exists a€N* such that p = 2%¢g, where ¢€2N + 1, and it is sufficient to

replace p with ¢ in the expression of the term vy, which does not change the demonstration.

Definition 1.1. Let f = 2%p, where €N and pe2N + 1. The sequence {v} }ien, the

so-called reformulated Collatz sequence, is defined as follows:

P ifl=-1
of = ¢ 2 if =0

3!(3p4-1) -1 gl-1-i .
) o= it1>0
222:0 a; 2170 222:1._‘_1 o

Where p in the sequence {v]'} means that the sequence depends on p, «q is the exponent
3v;_1+1

such that v§ is odd, the oy, fori € {1,...,1}, are the exponents such that v¥ = qar— 1S

odd, and N =NU{—1}.

Throughout the paper, this type of sequence will be called R-Cz sequence, and we will

consider as many different sequences as there are different values of p.

Definition 1.2. Let Rq, = {{vfj}}(j DENXN’ be the set of all R-Cz sequences, where p; €

2N + 1. Let RS, and RS, be the sets of convergent and non-convergent R-Cz sequences,
respectively, then Rc, = RS, U RS,

Theorem 1.1. Let f : 2N+ 1 — R¢., be a function defined for all p € 2N+ 1 as follows:
f(p) ={u}

Then f is bijective.

Proof. Let (p,p’) € (2N + 1)? such that p # p’. Then, since {v!'} and {vf/} are distinct

R-Cz sequences (at least by their first term), we have:

Fp) = [} # (o'} = ().



Hence, f is injective. Let {v}'} € R¢., by definition we have f(p) = {v]'}. Therefore, f is
bijective. 0

2 Cycles of R-Cz sequences

We are going to study whether an R-Cz sequence can enter a cycle, under what conditions
and what cycles are possible. We will begin with cycles of lengths 1, 2 and 3, and then
move to study the general case. The mathematical expression of the terms in the sequence,
involving the exponents ;" is the same as the one presented in the introduction, and to

simplify matters, we will start indexing the exponents from 0.

The common condition to the cycles of lengths 2, 3 and ¢ lies in the fact that the values
within a cycle must be distinct. Otherwise, due to the definition of the sequence {v!'},

the repetition of a value would result in a cycle of a shorter length.

2.1 Cycle of length 1

It will be shown that the only cycle of length 1 that any R-Cz sequence {v]} can enter,

is the cycle of value (1).

Theorem 2.1. For all p € 2N+ 1, the only cycle of length 1 that the R-Cz sequence {v]'}

can enter from a certain rank is the cycle of value (1).

Proof. The sequence {v]'} has a cycle of length 1, if there exists LeN such that for any
I>L,v},, =v]. Let ¢ the value of the term of rank I in the sequence, then v/, = v] = ¢

if:
3q+1 B 1
1= 90 T 97 3m_3

This is only possible if 2% =4 = qy = 2, and it follows that ¢ = 1. Reciprocally, we
check that if v/ = 1, then for all keN*, v}, = 1.

The only cycle of length 1 into which the sequence {v]'} can enter from a certain rank is
therefore the cycle of value (1), which corresponds to the cycle of values (1,4,2) in the

sequence {uy}. O
2.2 Cycle of length 2 or 3

It will be shown that no R-Cz sequence has either a cycle of length 2 or length 3.

Theorem 2.2. For all p € 2N + 1, the R-Cz sequence {v]'} has neither a cycle of length
2 nor a cycle of length 3.

()We recall that for all i € N, o; > 1.



Proof there is no cycle of length 2. The sequence {v}'} has a cycle of length 2, if
there exists LeN such that for all I>L, v}, , = v]. Let ¢ be the value of the term of rank

| in the sequence, then v}, , = v} = ¢ if:

3(3q+ 1)+ 2% 3 42%
Qap+an = = 2aptar _ Q

This assumes that 2*07* > 9, which implies ag + a;>4. For oy + a7 = 4, we find that
g =1 when (g, 1) = (2,2), and that ¢ is not an integer for the other values of (ag, a1).
For ag + a1 > 4, ¢ is not integer because 207 — 9 > 3 4 2% for all ap>1.

Since we have established that the sequence becomes stationary from rank [ when ¢ = 1,

the sequence {v'} cannot enter a cycle of length 2. O

Proof there is no cycle of length 3. The sequence {v/'} has a cycle of length 3, if
there exists LEN such that for all [>L, v} 5 = v]. Let ¢ be the value of ther term of rank

[ in the sequence, then v} 5 = v = ¢ if:

 32(3g+ 1) + 3.2 4 200t 94320 4 200%m
- ao-+ar+az = 9% Hagtaitas — o7

This assumes that 290t > 97 <which implies ag + aq + as>5. For ag + ay + ap = 5,
q is not integer. For ag + a1 + aa = 6, we obtain that ¢ = 1 when (ag, ag, an) = (2,2, 2),

and ¢ is not integer for the other values of (ag, oy, as).

Finally, for ag + a1 + as > 6, ¢ is not integer because :
2 (200%1te2 — 27) > (9 + 3.2%0 4 200Fe)

Therefore, as in the previous case, we conclude that the sequence {v]'} cannot have a cycle
of length 3. O

2.3 General case

Having demonstrated that no R-Cz sequence can exhibit a cycle of length 2 or 3, we now

demonstrate that no R-Cz sequence can have a cycle of length greater than or equal to 4.

Theorem 2.3. Let t > 4, for all p € 2N + 1, the R-Cz sequence {vl'} has no cycle of
length t.

Proof. The sequence {v/'} has a cycle of length ¢>4, if there exists LeN such that for
all I>L, v/, = v]. Let g the value of the term of rank [ in the sequence, such that ¢ > 1
to exclude the cycle of length 1 and value (1), then v}, = v] = ¢ if:

3t—l + Z:;g <3t—2—i (22;:0 aj>>

2o _ 3t

371 (3q+ 1) + 30, (3t—2—i (223:0 "‘f))
q =

22;:3 a; — 4



The cyclicity condition for a cycle of length ¢ can also be expressed, such that for any

keN* vk = vy, which is equivalent to:

gkt—1 + ZfiBQ (3kt—2—i (22;-:0 aj>)

1= 22?;61% — 3kt

Hence, for all k > 2,v], = v},,,, that is:

3ty 3G
q= ge1 _ 3t - Qer — 3kt

Where:
T Zf;(l] a; and C] = Zf;g <3t_2_i 9% aﬂ')
o o= S ap and Gy = YU (34720 9%
This yields:
20 (3" 4 O — 27 3T 2% L 0) =35 (G, = 3T OY)
Let :
o A=3M"14 0y —29e. gl _ g% O

] B:Ck—?)kt_t'Cl
Finally, we find that the cyclicity condition reduces, for all £ > 2, to the following equation:

2°A =3'B (2.1)

First case A=0and B=0

The equation (2.1) can have solutions if A = B = 0. However:

kt—2 t—2 kt—2
B = Z 3kt727i'22§:0 o Z 3kt727i‘22;:0 o Z 3kt727i.22}20 o >0
=0 =0 i=t—1

The term B is a series that diverges to infinity as &k — +00, and given that it is always

strictly positive, this case is excluded.

Second case A <0 and B >0
If A <0 then 24 < 3!B, this case is also excluded.



Third case A >0 and B >0
As 2 and 3 are prime numbers, and the factorization of an integer into prime factors is

unique, according to the equation (2.1) we have:

A=3'm and B =2“m

And because A is odd and B even, me2N+1. Insofar as we are considering the possibility
that the sequence {vl'} can have a cycle length of ¢, for all i € {0,...,t —1,... kt — 2},

according to Definition 1.1, we will have «; € {ag, ..., a1}

Then, since A and B depend on k, the equations A = 3'm and B = 2°m have solutions,
if there exist m € 2N+ 1, t > 4 and (ag,...,a;_1) € (N*)!) such that for all & > 2,
A =3'm and B = 2°'m.

Concerning the equation B = 21, for m = 1, for all t>4 and for all (ay, ..., 1) € (N*),
it suffices to take k = 2 to obtain B > 2°m.

Now, suppose there exists m > 1, t>4 and (aq, ..., 1) € (N*)', such that for some
k>2, B = 2°m, then, given that B diverges to infinity as k — +o00, and that it is possible
to take k as large as desired, it would be sufficient to consider £ + 1 for that B > 2m

(since 2°*m does not depend on k).

Therefore, there exists no me2N + 1,¢ > 4 and (ap, ..., 1) € (N*), such that for all
k>2, we have B = 2¢'m, and thereby the equation (2.1) has no solution.

This implies that for all p€2N + 1, no R-Cz sequence can exhibit a cycle of length t>4,
and it also confirms that any R-Cz sequence does not have a cycle of length 2 or 3, since

nothing prevents ¢ from taking the value 2 or 3 in equation (2.1). O

3 R-Cz sequences converging to 1

In this section, we will study the convergent R-Cz sequences (i.e., those that eventually
reach 1) to determine their relationship to the set 2N + 1. This will lead us to partition
this set into the subsets 6N + 1, 6N 4 3 and 6N + 5.

3.1 Penultimate terms

Since section 2 has established that the only cycle of length 1 an R-Cz sequence can have,

is the cycle with value (1), it follows that if an R-Cz sequence converges, it must converge

227L -1
3 Y

to 1. This implies that its penultimate term (the term preceding 1) is of the form
where n € N*\ {1}.

Theorem 3.1. If the R-Cz sequence {v! }1en converges to 1, then there exists k € N such
that v, = Q%T_l, where n € N*\ {1}, and such that vj = 1.



Proof. Let us suppose that the sequence {v}'} converges to 1, and let k be the first index

for which v}, = 1.

Given that v} _, € 2N + 1, we have:

3vpg_, +1 2% — 1
'UZ:U’“;:1<:>UP = < 2°-1=0 (mod 3)

Fora=1 = 2—-1=1 (mod3) and fora=2 = 4—-1=0 (mod 3). We prove
by induction, assuming that for a = 2ay we have 22* — 1 =0 (mod 3), where oy € N*,
that:

92(a0tl) _ | = (3+1) x 2200 _ 1 =3 x 2%0 4 (220‘0 —1)=0 (mod 3)

And assuming that for o = 2cp + 1 we have 2?2t — 1 =1 (mod 3), that:

92(e0t D+l _ 1 = (34 1) x 2200+ _ | =3 x 220+ 4 (22001 _ 1) =1 (mod 3)

Therefore, the penultimate term of the convergent R-Cz sequence {v}} is of the form

22n—1
3

R-Cz sequences. O

, where n € N*\ {1}. This sequence being arbitrary, it applies to all convergent

This implies there are infinitely many distinct penultimate terms, each belonging to a
distinct convergent R-Cz sequence. In all that follows, we will refer to v;}p as the penul-

timate term of the convergent R-Cz sequence {v!'}, where b, is its index in the sequence

22n—1

and n is the variable n in 3

3.2 Preceding terms

By going through the convergent R-Cz sequences, from their penultimate term v, to
their second term vf), we will study the preceding terms; first, those just preceding the

penultimate terms, and then the other ones.

Let us recall that if a term, whether it is the penultimate term or any other term of a
convergent R-Cz sequence, is immediately preceded by infinitely many terms, only one of

them belongs to the same sequence.

3.2.1 Preceding terms of penultimate terms

The preceding terms of a penultimate term are those immediately before it, found in the
convergent R-Cz sequences leading to this penultimate term. Fach of these preceding

terms belongs to a distinct convergent R-Cz sequence.



Theorem 3.2. Let Oy, = 227;_1 be the penultimate term of the convergent R-Cz sequence

{v]}ien, and let n = 3k + a, where k € N, a € {0,1,2} and n > 2, therefore:

e ifa=0, vy €6N+3 (class B) and has no preceding terms;

e ifa=1, vy, € 6N+ 1 (class A) and has an infinite number of distinct preceding

terms of the form w, where a € 2N* and k € N*;

o ifa =2, vy, € 6N +5 (class C) and has an infinite number of distinct preceding

w, where a € 2N+ 1 and k € N.

terms of the form 5

Proof. For the penultimate term v, we have:

B /| . 29(22" —1) — 3
Uy =T = Uy g = 5

— 2%(2"" ~1)-3=0 (mod 9)

In other words, the term vy _,; of the R-Cz sequence {v]'} precedes the penultimate term
if 22(2%" — 1) — 3 is odd and divisible by 9. As the reader will note, to determine the

preceding terms of a penultimate term, we will proceed by induction.

First case a =0
For (k,a) = (1,1), 21 (223 — 1) =3 =6 (mod 9).
And suppose that for (k, ) = (1, ap), where ap € N*\ {1}:

2°0 (2% —1) —=3=6 (mod 9)

We have for (k, o) = (1, a0 + 1):
200H1 (229 — 1) =3 = (2" (2% -1) =3) +2(2*° 1) =6 (mod 9)
Then, suppose that for (k,«) = (ko, ), where kg € N*\ {1} and o € N*:

2% (2% — 1) —3=6 (mod 9)
We have for (k,a) = (ko + 1, a):
20 (223t _ 1) — 3 = (2% (22%%0 — 1) —3) +63-2%-22%% =6 (mod 9).

Therefore, if n € 3N*, the penultimate term vy, has no preceding term. We demonstrate
in Appendix 6.2 that in this case vy, € 6N + 3.

Second case a =1
For (k,a) = (1,1), 28 (22%G+D — 1) =3 =3 (mod 9).
And for (k,a) = (1,2),2% (226G —1) =3 =0 (mod 9).

10



Suppose that for (k,a) = (1,2a0 + 1), where oy € N*\ {1}:

9200+1 (22X(3+1) — 1) —3=3 (mod?9)

We have for (k, o) = (1,2(ap + 1) + 1):

220t (92x(BH1) _ 1) — 3 = (2200t (22XBF) _ 1) — 3) 4765 - 22T =3 (mod 9).

And suppose that for (k, ) = (1, 2ayp):
220 (22B+) _ 1) —3=0 (mod 9)
We have for (k,a) = (1,2(ag + 1)):

220t ) (23D _ 1) — 3 = (220 (22XGH) — 1) — 3) + 76522 =0 (mod 9)

Then, suppose that for (k,«) = (ko, ), where kg € N*\ {1} and o € 2N + 1:

20 (22XBRot) _ 1) —3=3 (mod 9)

We have for (k,«) = (ko + 1, a):

204 (22><(3(k0+1)+1) o 1) . 3 = (2(1 (22><(3k0+1) . 1) - 3) 4 63 . 2a+2(3k0+1) = 3 (mOd 9)

Finally, suppose that for (k, ) = (ko, ), where kg € N*\ {1} and o € 2N*:

20 (2Bt _ 1) —3=0 (mod 9)

We have for (k,«) = (ko + 1, a):

20 (2Bt _ 1) — 3 = (22 (227Gt — 1) — 3) +63- 2072k =0 (mod 9)

Therefore, if n € 3N* + 1, the penultimate term vy is preceded an infinite number of
a(92n_1)_
distinct terms of the form 2(2—91>3

that in this case v{]p € 6N+ 1.

, where a € 2N*. We demonstrate in Appendix 6.2

Third case a =2
For (k,a) = (0,1),2'(22(0+2) — 1) =3 =0 (mod 9).
And for (k,a) = (0,2),2%(22(0 +2) — 1) =3 =3 (mod 9).

11



Suppose that for (k, ) = (0,2a0 + 1), where oy € N*\ {1}:

220011(22(0 4 2) = 1) =3 =0 (mod 9)

We have for (k, o) = (1,2(ap + 1) + 1):

2200t DH(22(0 4+ 2) — 1) — 3 = (220 (22(0+2) — 1) — 3) + 452" =0 (mod 9)

And suppose that for (k,«) = (0, 2ay):

2220(22(042) — 1) -3 =3 (mod 9)

We have for (k,a) = (0,2(cg + 1)):

22000t (22(0 4 2) — 1) — 3 = (2**°(2*(0+2) — 1) —3) +45-2* =3 (mod 9)

Then, suppose that for (k,«) = (ko, ), where ky € N* and o € 2N + 1:

2%(2*(3kg+2) —1) =3 =0 (mod 9)

We have for (k,«) = (ko + 1, a):

2%(2°(3(ko+1)+2)—1)—3 = (2*(2°(3ko + 2) — 1) — 3) +63-2*-2%(3kg+2) =0 (mod 9)

Finally, suppose that for (k, ) = (ko, ), where kg € N* and o € 2N*:

2%(22(3kg +2) —1) =3 =3 (mod 9)

We have for (k,a) = (ko + 1, a):

2%(2°(3(ko+1)+2)—1)—3 = (2*(2°(3ko + 2) — 1) — 3) +63-2-2%(3ko+2) =3 (mod 9)

Therefore, if n € 3N + 2, the penultimate term vy 18 preceded by an infinite number of

%{1)_3, where a € 2N 4+ 1. We demonstrate in Appendix

6.2 that in this case vj € 6N+ 5. O

distinct terms of the form

To summarize, the penultimate terms fall into three classes, depending on the value of n
modulo 3. Only those in 6N + 1 or 6N + 5 have preceding terms, as shown in the figure
below.

12



Root : {1}

Penultimate terms

Class A : 6N + 1 Class B : 6N + 3 Class C : 6N + 5

; ]

Infinity of preceding terms Infinity of preceding terms

Figure 1. The 3 classes of penultimate terms

3.2.2 Other preceding terms

The other preceding terms are those that immediately precede a term of an R-Cz sequence,
whether convergent or not. Asin the case of the penultimate terms, each of these preceding

terms belongs to a distinct R-Cz sequence.

Theorem 3.3. Let {v)}ien be an R-Cz sequence, convergent or not, and let v} € {v]'},

where i € N and v? # 1, denoted as the parent term, then:

e if v € 6N* + 1, it is preceded by an infinite number of distinct terms alternately in

6N + 1, 6N 4+ 3 and 6N + 5. These terms are of the form 2%?_1, where a; € 2N*;

o if v} € 6N+ 3, it has no preceding terms;

o if v € 6N+ 5, it is preceded by an infinite number of distinct terms alternately in

6N+ 1, 6N+ 3 and 6N+ 5. These terms are of the form 2%3571, where a; € 2N+ 1.

Proof. Let ¥ € {v''}, where {v]'} is an R-Cz sequence, i € N and v? # 1, we have:

3P +1 2% P 1
vP:#@vfflszlﬁZ“ivf—le (mod 3).

This implies that the previous terms of v} are odd and divisible by 3, and one of them is

v? 1. As before, we will proceed by induction.

First case v} € 6N* + 1
If v? € 6N* 4 1, then v? > 7 and there exists k € N* such that v/ = 6k + 1. In the sequel,

we make use of the congruence 6k +1 =1 (mod 3).

For (k, ;) = (k,1),2(6xk+1)—1 =1 (mod 3) and for (k, a;) = (k,2), 22(6xk+1)—1 =
0 (mod 3). Suppose that for (k, ;) = (k,2a + 1), where ag € N*\ {1}:

2200t (6 x k+1)—1=1 (mod 3)

13



We have for (k, ;) = (k,2(ap + 1) + 1):

220t DHL (6 5 k1) — 1= 220M (6 x k+1) — 14+21-22°t =1 (mod 3).

And suppose that for (k, ;) = (k,2ap), where ag € N*\ {1}:

2206 xk+1)—1=0 (mod 3)

We have for (k,a;) = (k,2(ap + 1)):

2200t (G x b+ 1) —1= (226 x k+1) — 1) +21-2" =0 (mod 3)

Therefore, if v € 6N + 1, it is preceded by an infinite number of distinct terms of the
2% (6k+1)—1
3
terms are alternately in 6N + 1, 6N + 3 and 6N + 5.

form , where a; € 2N*. We demonstrate in Appendix 6.3 that these preceding

Second case v € 6N + 3
If v} € 6N+3, then v{ > 3 and there exists & € N* such that v} = 6k+3. Since 6k+3 =0
(mod 3), we have:

296k +3)—1=2 (mod 3)

Therefore, if v € 6N + 3, it has no preceding terms.

Third case v € 6N + 5
If v € 6N + 5, then v} > 5 and there exists k& € N such that v} = 6k + 5. In the sequel,

we make use of the congruence 6k +5 = —1 (mod 3).

For (k, ;) = (k,1), 2" (6 xk+5)—1 =0 (mod 3), and (k,a;) = (k,2), 22(6xk+5)—1=1
(mod 3). Suppose that for (k, ;) = (k,2a9 + 1), where oy € N*\ {1}:

2200t (6 x k+5)—1=0 (mod 3)

We have for (k,a;) = (k,2(ap + 1) + 1):

2200t DHL (6 5 |+ 5) — 1 = (220 (6 x k +5) — 1) + 1522207 =0 (mod 3)

And suppose that for (k, ;) = (k,2ap), where ag € N*\ {1}:

2206 x k+5)—1=1 (mod 3)
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We have for (k,a;) = (k,2(ap + 1)):

220t D6 x k+5) —1= (2206 x k+5)—1)4+15-2**0 =1 (mod 3)

Therefore, if v¥ € 6N+ 5, it is preceded by an infinite number of distinct terms of the form

2% (6k+5)—1
3

, where o; € 2N + 1. We demonstrate in Appendix 6.3 that these preceding

terms are alternately in 6N 4 1, 6N + 3 and 6N + 5. O

Clearly, Theorem 3.3 also applies to the penultimate terms, and due to its recursive

nature, it reveals an infinite tree structure, which is the subject of the following section.

3.3

Tree structure of the convergent R-Cz sequences

Thanks to what has been built and demonstrated so far, the convergent R-Cz sequences

can be represented in the form of a tree structure as follows:

at level 0: the root set containing the element 1;

at level 1: three infinite subsets of 2N + 1. The first contains the penultimate
terms in 6N + 1 (class A), the second those in 6N + 3 (class B), and the third those
in 6N + 5 (class C). Their union contains the penultimate terms of all convergent

R-Cz sequences;

at level 2: each term of the class A or C is immediately preceded by an infinite
number of distinct terms alternately in 6N + 1, 6N 4+ 3 and 6N + 5, which form
together the level 2. The terms in 6N + 3 have no preceding terms;

at level 3: each term of the previous level is immediately preceded by an infinite
number of distinct terms alternately in 6N + 1, 6N + 3 and 6N + 5, which form
together the level 3. As in levels 1 and 2, the terms in 6N + 3 have no preceding

terms;

and so on ad infinitum.

From this description, a convergent R-Cz sequence is a path that starts from a node, or

a leaf when its first term is in 6N + 3, and converges towards the root. The figure below

shows this tree structure.
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Root : {1}

! !

Class A : 6N + 1 Class B : 6N + 3 Class C : 6N + 5

penultimate terms penultimate terms penultimate terms
6N + 1 6N + 3 6N + 5 6N + 1 6N + 3 6N + 5
subsets subsets subsets subsets subsets subsets

6N + 1||6N + 3||6N + 5| |6N + 16N + 3||6N + 5
subsets || subsets || subsets | | subsets || subsets || subsets

Figure 2. Tree structure of the convergent R-Cz sequences

Definition 3.1. Let C, be the union of the subsets of 6N+ 1, 6N+3 and 6N+5 contained
in the first z levels of the tree structure (excluding level 0), defined as follows:

c.=JUaci
i=1jel;

Where z € N*, each C; ; is a subset of 6N + 1, 6N + 3 or 6N + 5 that contains terms of

the sequences, and I; is the set indexing the subsets of level i of the tree structure. And

c=UUd

i>0jel;

let C' be the complete union:

Theorem 3.4. Let (ig, jo) € Nx I;, and (i1, j1) € N x I;; such that (ig, jo) # (i1, 1), then
Cliojo) N Clirj) = 0

Proof. Let (ig,jo) € N x I, and (i1,j1) € N x I;; be two distinct pairs. First of all, if
Ciy.jo and Cj, j, are not both subsets of 6N + 1, 6N + 3 or 6N + 5, their intersection is
clearly empty. Then, if there is a descending or ascending path in the tree structure from
Ciy.jo to €y, 41, which corresponds to a partial R-Cz sequence, since Theorems 2.1 to 2.3
state that an R-Cz sequence has no cycle (except the cycle of length 1 and value (1)), the

same term cannot appear in both Cj, ;, and Cj, j,, hence, Cy, j, N Cy, 4, = 0.

0,J0
Otherwise, if there is no descending or ascending path from Cj

exists v € C;

o.jo t0 Ci, j,, suppose there

oo N Ciy iy, where v! is a term of a convergent R-Cz sequence. This would
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imply that either a parent term has v} as its preceding term twice, which cannot occur
since the preceding terms of a parent term are distinct (see Theorems 3.2 and 3.3), or
that two distinct parent terms have v} as their preceding term, which also cannot occur
since a term of an R-Cz sequence (in this case v}) can only be followed by a single term.
Therefore, in all cases, C;, j, N Cy, 4, = 0. ]

Lemma 3.1. There are an infinite number of convergent R-Cz sequences.

Proof. By Theorem 3.2, there are an infinite number of penultimate terms forming the
level 1 of the tree structure, and each of them is preceded by an infinite number of distinct

terms forming level 2.

In turn, by Theorem 3.3, each term of level 2 is preceded by an infinite number of distinct

terms forming level 3, and so on.

Therefore, traversing the tree from the nodes, or the leaves (i.e., the terms in 6N + 3
because they do not have preceding terms), to the root, there are infinitely many paths

corresponding to as many convergent R-Cz sequences. 0

Remark 3.1. Since terms in 6N+ 3 have no preceding terms in any R-Cz sequence, only

the first term of an R-Cz sequence, convergent or not, can be in 6N + 3.

3.4 Sequences of preceding terms

A sequence of preceding terms contains all preceding terms generated by a parent term,
ordered in ascending order. In other words, it contains only the infinitely many children
of that parent term, and therefore all terms of the sequence belong to the same level
of the tree structure. In all that follows, this type of sequence will be referred to as a

Pt-sequence.

3.4.1 Main objects

Definition 3.2. Let {b;};>0 be the sequence of penultimate terms ordered in ascending

order, such that for all i € N,b; = —22@22)_1

Thus bo = 5, bl = 21, b2 = 85, b3 = 341, b4 = 1365, etc.

Definition 3.3. Let {s;;}ien be a Pt-sequence, according to Theorem 3.3, it is defined as
follows:

Sj,i:

1
3
i1
g -4 —3,

()Except for 1, which is the parent term of the penultimate terms.
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Where j € N and q; is the parent term of the Pt-sequence.

Let {{sj,i}}(j iyelpexN be the family of the Pt-sequences sequences corresponding to all con-
vergent R-Cz sequences, ordered by their first term in ascending order, where Ip, is the

set used for indexing the Pt-sequences with a single index.

Let S = Ujcs,, {85} be the union of terms of these Pt-sequences, then C'= SU{b;} U{1}.

In view of the above, the set C' contains the terms of all convergent R-Cz sequences,

consequently, according to Definition 1.2 and Theorem 1.1, C' is in bijection with R{.,.

Lemma 3.2. For all (jo,j1) € Ipt X Ips, with jo # j1, we have {sj,;} N {s;,..} = 0. In

other words, no Pt-sequence shares terms with another.

Proof. This lemma is a straightforward consequence of Theorems 3.3 and 3.4. Indeed,
let (jo,j1) € Ipt X Ipy, with jo # ji, and let g;, (respectively, g;,) be the parent term of
the Pt-sequence {s;,;} (respectively, {s;,i}).

It follows from Definition 3.3 that {s;,,} N {s;,:} # 0, if there exists aj, € 2N* or 2N +1,
depending on whether ¢;, € 6N* + 1 or 6N + 5, and if there exists o, € 2N* or 2N 4 1,
depending on whether ¢;, € 6N* + 1 or 6N + 5, such that:

2%0q;, — 1 _ 2%1q;5 — 1

3 3 = 2005, = 2%1g;,

Without loss of generality, we can assume «;, > a;,, then 2% ~%1¢q; = ¢;,. However,
this leads to a contradiction since the left-hand side is even, while g;, is odd. The same
contradiction arises if we assume «;, < a;,.

Finally, if o, = «;,, then {sj,;} = {sj .} and therefore j, = j;, contradicting our
hypothesis. Hence, if jo # j1, then {s;,:} N {s;,.} = 0. O

Lemma 3.3. The sets Ip; and C are countable.

Proof. According to Lemma 3.2, for all (jo, j1) € Ips X Ipy, with jo # ji, {sjo,i}N {551} =
0, therefore, i 10,1544} 18 a partition of S. And considering S C 2N+1, Ip; is countable.
Then, given that C'= S U {b;} U {1}, as a union of countable sets, C' is countable. O

3.4.2 Shifts

Lemma 3.4. Let g; be a term in the tree structure at level k > 1 (the parent term), and
let {s;;}i>o0 be the Pt-sequence it generates, shifted either to the left or to the right. Then,

for the terms of the Pt-sequence we have:

22i+1.qj‘ lf Qj € GN + 5

. (3.1)
22 g, if gy € 6N+ 1

Sjit1 T Sja =
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lim 221 — 4 and 4 < 22 < 22 (3.2)
=00 S5 Sji 3
For the shift factor:
9L
- 530 L < 2 if gy € 6N+5 (s50 < g; : left shift) (3.3)
9 3qj < % if q; ceo6N+1 (Sj,O > q; : I'lght Shlft)
And for the first term of the Pt-sequence:
Sj’() = 5qj.q]' (34)

Proof. For (3.1), if g; € 6N + 5 (respectively, ¢; € 6N + 1), Theorem 3.3 states that
92i+1 Qj_l 22(i+1) Qj_l)

the term number ¢ of {s;;} is equal to s;; = 5 3

(respectively, s;; =

therefore:

2PV g1 22 g1 92ikl o i
Sji+l — S5 = 22(14—2)3(1.,1 92(i+1) :?1‘*1 22 i1 o 1 o e ONHD
T — g i— =220t ¢ if g; € 6N+ 1
Concerning (3.2), if ¢; € 6N+ 1:
s 220 g -1

For (q;,1) = (7,0), 4 < 24 — 146;77:11 = % = 13—3, then, because of (3.5), for all
i :
g;,i) € (6N + 1) x N, it follows that 4 < 2t — 2Z0208x7-1 < 13 \We got the same
j 3

sji 0 220D 71
result for ¢; € 6N 4 5.

91
Concerning (3.3), Theorem 3.3 states that S;—JO = =L < %, when ¢; € 6N + 5, or that
‘Z'_;_O = ;‘Tj < 3, when ¢; € 6N+ 1. And finally, (3.4) is clearly a result of (3.3). O

Definition 3.4. Let 3% be the average shift factor of the first k + 1 Pt-sequences, by
which a Pt-sequence {s;;}, where j € Ip, and 0 < j < k, is shifted from its parent term

B(a)k — < H /@%’) o

J€lpt, 0<5<k

q;, defined as follows:

Where g — d 3, 1 & €ON+5

4 lfq]€6N+1
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Lemma 3.5. If for all K € N, there exists k > K such that f®% > 1, then the number of
right-shifted Pt-sequences, among the first k+1, exceeds v times the number of left-shifted
ln(%)
In(3)"

ones, where v =

Proof. Suppose that for all K € N, there exists k > K such that 5®* > 1. Definition
3.4 states that for k sufficiently large:

1
E+1

e =(6)6))

J€lpt
0<j<k

Where (I,r) € N* x N* and [ 4+ r = k + 1, hence:

() =6 =

In(2

ln(ﬁil ~ 1.4094 [, and we conclude that the first £+ 1 Pt-sequences
3
ln(%)
ln(%)

Finally, this yields r >

are shifted to the right strictly more than v = times as much as to the left. U

Lemma 3.6. If for all K € N, there exists k > K such that 3% > 1, then the sequence
{¢j}jen, ordered in ascending order and where q; is the parent term of the Pt-sequence

{sji}, grows on average exponentially.

Proof. Suppose that for all K € N, there exists k& > K such that 3®* > 1. Let q; be
the parent term of the Pt-sequence {s;;}.

Since all Pt-sequences belonging to the tree of convergent R-Cz sequences originate from

penultimate terms, there exists a path in the tree structure from b;; to g;, such that:

bij = Qi =7, = qjN]-—l

Where b;; is the ancestor penultimate term of g;, and Nj; is the number of levels between
bi; and ¢; (excluding the level of b;; and including the level of ¢;), so that g; is located at

level N; + 1 in the tree structure.

According to Lemma 3.4, we then have:

8; + 4% B%ib;, if N; =1
§; + 4% gub, T2 o if Ny > 1

4;

Where:
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e % is the shift factor associated with the penultimate term bi;;

e [%n is the shift factor associated with the parent term g, ;
N; '
e a; = > pos(g;,), where pos(g;,) is the index() of ¢;, in its Pt-sequence;

n=1

e ); € Q4 depends on a;.
Taking into account the average shift factor 5®*, we have:

§; +4% (B@*) b, if N; =1
§; + 4% (B@R) b, i Ny > 1

j ~

(5(6‘)’“)N‘j is the average shift factor relative to the penultimate term 0;;, and d; + 4%

indicates the horizontal position of g; at level IV;1; in the tree structure.

Given that both (5(3)’“)Nj and 4% grow exponentially with N; and a;, it follows that the

sequence {g;} grows on average exponentially. O

3.4.3 Central result

Building on what has been defined and demonstrated so far, we now introduce a central
result that establishes a relationship between the distribution of the Pt-sequences in 2N+1

and the average shift factor.

Let D be the complement set of C' in 2N + 1.

Definition 3.5. Let RP = [a;,b;] be an interval of consecutive odd numbers in D, which
corresponds to an empty space in C such that RPN C = 0, and let RP® = {RP};cp, be

their set, where E, is the set indexing all empty spaces of C.

Theorem 3.5. If the set C' is countable, then there exists K € N such that for all k > K,
p@k <1,

Proof. We will proceed by contradiction.

Hypothesis
Suppose that C'is countable and assume by contradiction that for all K € N, there exists
k > K such that f®* > 1.

As this applies to all K, let {(k;, K;)}ien be a family of distinct pairs such that k; > K;
and S@k > 1 and let S = min ({6(a)ki}ogi§[) be the minimum average shift factor
on the interval [0, k], where I € N.

() Starting from 0.
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Pt-sequences shift
For the sake of the proof, we suppose that for all (jo, j1) € Ip; X Ips, with jo # j1, we have
{8jo.i} N {sj,.:} = 0, otherwise it would contradict the fact that no Pt-sequence shares

terms with another, as stated in Lemma 3.2.

Then, given that for all I € N, 5™ > 1, the Pt-sequences are shifted to the right strictly

more than v times as much as to the left, as established by Lemma 3.5.

Thus, when 8™ is close to 1, approximately 58.5% of the Pt-sequences are shifted to

the right by a factor ~ %, and this percentage increases as ™7 increases.

Empty spaces creation
According to Theorem 3.3, the creation of the Pt-sequences follows a tree-like pattern, as

does the creation of the empty spaces resulting from these sequences.

Let T,, denote the tree of the empty spaces, we then have:

e at level 1, there are infinitely many empty spaces located between the penultimate
terms, their size is unbounded as the penultimate terms progress exponentially (see
Definition 3.2);

e at level 2, penultimate terms in 6N + 1 or 6N + 5 generate an infinite number of
Pt-sequences, whose terms divide each empty spaces of level 1, into which they are

inserted, giving rise to an infinite number of new empty spaces;

e at level 3, in turn terms of level 2 in 6N+ 1 or 6N+ 5 generate an infinite number of
Pt-sequences, whose terms subdivide each empty spaces of level 2, into which they

are inserted, giving rise once again to an infinite number of new empty spaces;

e and so on.

Owing to the hypothesis, the generated Pt-sequences are not only shifted predominantly
to the right but do so exponentially.

Indeed, since for all 7 € N, ™! > 1, Lemma 3.6 states that at level z the Pt-sequences

z—1

are on average shifted to the right by a factor of at least (3(™71)*~'. To put it another

way, the Pt-sequences become increasingly distant from one another.

Therefore, the gaps between successive terms, together with 3% > 1, ensure that the
spacing within and between sequences is sufficient to contain the Pt-sequences generated

successively.

It follows that the creation of infinitely many new empty spaces at successive levels of the

tree structure must necessarily continue endlessly (see Appendix 6.5).

As shown in the figure below, the creation process of empty spaces can be represented

graphically by an infinite tree growing diagonally to the right.
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Root : {1}

! l ! l
Empty space Empty space
! : | { : !
Empty space Empty space Empty space Empty space
Empty || Empty Empty || Empty || Empty || Empty
space || space space || space || space || space

Empty || Empty

space || space

Figure 3. Tree structure of empty spaces

Uncountability
Insofar as it generates infinitely many levels, this creation process causes the tree to
expand endlessly, producing an infinite number of unending paths, and thereby making

the complete indexation of all empty spaces impossible.

Indeed, first it should be noted that although some branches terminate at certain levels,
due to the predominantly rightward shift of the Pt-sequences, which causes some empty
spaces to stop dividing, there remain infinitely many empty spaces at each level. Conse-
quently, endless paths can still be constructed by passing through different empty spaces

at the same level.

Then, let p' = (Pl 4ps -+ Ph.aos---) € NV be an endless path of T,,, where i € N is the
number of the path and pflz,az the index of an empty space at level n,.

We have (ng,ap) = (1,0) and for all j € N, (n;4+1,a;41) = (n; + 1,0), except when a

branch terminates at level n;. In that case (n;41,a;41) = (nj, 1) is the index of

’p;j+1,aj+1
the next empty space at level n; that will be subdivided at the level n; + 1, and we define
(n]’+2, &j+2) = (n]’ + 1, 0)

Finally, suppose there exists a bijective function f : N — P defined as follows:

f(l) = (p?;l(),ao?""pibz,az?"')
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Where P = {p'};en is supposed to be the set of all endless paths of the tree structure,

and supposed to be countable as it is in bijection with N.

Since there are infinitely many empty spaces at every level of T, (except at level 0),

there exist indexes py .o # Pnoaos -+ Prsa. 7 Prowans - - - » Which form a new endless path
X __ X X
P° = Phgagr > Pranr -+ )

Although this path is valid, it does not belong to P, as it differs from every path p* € P
in at least one position, contradicting the assumption that P contains all endless paths

of the tree structure, and thereby demonstrating that their set is uncountable.

Conclusion
As RP is defined as containing the intervals in D corresponding to all empty spaces in
C, and given that C is countable, it follows that the empty spaces of C' are themselves

countable.

However, it is impossible for the empty spaces to be countable in R” while generating an
uncountable number of distinct configurations in 7,,. This contradiction invalidates the
assumption that for all K € N, there exists k¥ > K such that 3®* > 1. Therefore, the
countability of C implies the existence of some K € N such that for all £ > K, g®* < 1.
This completes the proof. [l

Remark 3.2. In contrast to the paths of the tree of empty spaces, those of the tree of
convergent R-Cz sequences, which correspond to a backward traversal of these sequences,
are not endless. They all eventually terminate in a term belonging to 6N + 3 (which has

no preceding terms), however this will not be demonstrated here, as it is not necessary.

3.4.4 Distances

Definition 3.6. Let {s;, ., } and {sj, i, } be two Pt-sequences such that sj, o < sj, 0. Their

distance is defined as the distance between their first term, as follows:
d ({3j07i0}> {Sj1,i1}) = 51,0 = 51,0 — 5o,
Where oj, j, denotes twice the number of terms between sj, o and sj, o, that belong to other

Pt-sequences, excluding the first term of these latter. The average distance between two

consecutive Pt-sequences, among the first k 4+ 1 ordered in ascending order, is thereby:

k—1
1 Sko — Soo — O
A" = d ({s;}o<jck) = % ((E Sj+1,0 — 8;’@) - 00,k> e 2’0 nE
=0

Remark 3.3. Insofar as the objective is to determine whether the Pt-sequences move

away from each other depending on the value of S®*, this distance only accounts for the
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possible empty spaces separating the first terms of the Pt sequences.

Lemma 3.7. If for all K € N and for all v > 1, there exist ko, k1 € Ip;, with kg > K and

ko < ki, such that % > r, then for all K, there exists k > K such that B®* > 1.

Proof. By contraposition, suppose there exists K € N such that for all k£ > K, p®* < 1.
Let ]{50 and k; € Ipt, with k}o > K and ]{?0 < kl, then:

k
d(a) ! _ kO Sk‘l,o - 8]{:0,0 - Oko,k‘l

d@ko Jeyd@ko

Since the distance between two consecutive Pt-sequences is at least 200, and given that
ko > K and k; > K, implying that B®* < 1 and g®* < 1, it follows that there exists
¢ > 2 (independently of kg and/or ky), such that s, o — Sky.0 — Okoky < (k1 — ko) (see
Appendix 6.4). Hence:

Given that ko < ky and d@% > 2. we have:

d@k c d@)k1 c

—d(a)ko <1+ 5 = —d(a)ko <1+ 5 — &
We therefore conclude that there exist K € Nand (r = 1+ § —¢) > 1, with € €]0, 1],
such that for all ky and ki € Ipy, with ko > K and ko < ki, we have 3 < 7. 0

3.5 Natural density of C

In this section, we will study the natural density of C relative to 2N 41 (see [1]). To this

end, we will prove that the size of the eventual empty spaces is bounded.

Theorem 3.6. If there exists K € N such that for all k > K, B®* < 1, then there exists
L € N* such that for all i € N, card(RP) < L.

Proof. By contraposition, suppose that for all . € N* there exists ¢ € N such that
card(RP) > L.

This implies that among the empty spaces of C' (i.e.,the intervals of D), infinitely many
of them grow without bound, and consequently there exist ig < i, < --- <1, < --- such
that:

card(R}) < card(R}) < -+ < card(R}) < - -

Since these empty spaces have the effect of pushing the Pt-sequences further and further

apart, it follows that the average distance between two consecutive Pt-sequences increases.

() Because C' C 2N + 1.
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Then, for all K € N and for all » > 1, there exist ky and k; € Ip;, with kg > K and

d@)k
ko < ki, such that Sy > 7

Therefore, by Lemma 3.7, for all K there exists k > K such that S®* > 1, which

demonstrates the theorem. O

Definition 3.7. Let dioaq) : P(2N + 1) — [0, 1] be the natural density relative to the set
2N + 1, defined for all A € P(2N + 1) as follows:

' Nioda),n(A)
d A)= 1 ;
(odd)( ) ,Hufoo N(odd),n(QN +1)

Where Noadayn(A) = card(AN{L,3,...,2n+1}) is the number of odd numbers in A, and
Nioda)n (2N + 1) = card({1,3,...,2n 4+ 1}) = n) in 2N + 1, both restricted to numbers
between 1 and 2n + 1.

Theorem 3.7. If there exists K € N such that for allk > K, ®* < 1, then d(odaa)(C) > 0.

Proof. Once we have established, thanks to Theorem 3.5, that the countability of C'
implies there exists K € N such that for all £ > K, B®* < 1, it follows that the Pt-
sequences are close to one another, in the sense that the size of any eventual gaps between

any group of them is bounded. This is precisely what Theorem 3.6 asserts.

If we were to suppose the opposite, it would mean that as we move through the Pt-
sequences, the average distance between them becomes larger and larger, which, by The-
orem 3.6, would imply that for all K € N, there exists k& > K such that 3®* > 1, and in
turn, by Theorem 3.5, would imply that the empty spaces are not countable.

Therefore, since Theorem 3.6 states that there exists L. € N* such that the size of any
empty space of C' is at most L, it follows that in every interval of L + 1 consecutive odd

numbers, there is at least one element of C'. Then, we have:

. Nodayn(C) - (5] 1
pr— 1 ? pr— 1 p—
dioaq (C) = Tim (N(Odd),n(ZN T1)) et n 7110

This completes the proof. O

4 All R-Cz sequences converge to 1

Terence Tao proved in 2021 that divergent Collatz sequences are statistically negligible
(see [7]). Considering the theorems proven so far, we have all necessary elements to

demonstrate that all R-Cz sequences converge to 1.
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4.1 Preliminaries

According to Definition 1.2, Rdcz contains all R-Cz sequences that do not converge, and
as the complement of C' in 2N + 1, D contains all terms of these sequences. Therefore, as

a corollary of Theorem 1.1, D is in bijection with Rdoz.

Since the empty spaces of C are the RP intervals of D (see Definition 3.5), D is defined

as follows:
D=JR’
i€Es
We know from Theorem 3.6 that there exists L € N* such that the size of any empty

space of C'is at most L. Therefore, the size of any RP interval is at most L as well.

Lemma 4.1. (1) Let {d} }ien be a divergent R-Cz sequence. Then, there exists a sequence

of indices ig, i1, ..., 1, ..., such that:
p p P
diy < djy <o <dy <.
We denote by {dj }ren this subsequence of {d}}. (II) Only terms in 4N+ 3 can cause the
sequence {dV'} to increase.

Proof. Concerning (I), since the sequence {d}'} diverges to infinity, an infinite number

of its terms become larger and larger.

Therefore, there exists a sequence of indices ig, i1, ..., %, ..., such that:

dy < di <---<dj <--

Concerning (II), let d? be a term of {d}'}. Since d is an odd number, it must be of the
form 4n + 1 or 4n + 3, where n € N. If &¥ = 4n + 1:

po 3G+l 3Un+ D+l 12044 6n+2 3n+tl
i+ T T oa - 90 - 2a T 9a-1 T 9a-2

Hence, a > 2 and d,; < d!. Otherwise, if d} = 4n + 3:

po 31 3(n+3) 41 120410 60+
+1 Qo - Qo - Qo o 2a—1

Noting that 6n is even and 5 is odd, o = 1 and then (d},; = 6n+5) > (d} = 4n+3). O

Theorem 4.1. If D is supposed to be non-empty, then all R-Cz sequences of R, diverge
to infinity.
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Proof. Suppose D is non-empty. Then, RS contains at least one R-Cz sequence that

z

does not converge.

On the one hand, Theorems 2.1 to 2.3 state that no R-Cz sequence has a cycle other
than the trivial cycle of length 1 and value (1), implying in view of Definition 1.1 that
all its terms are distinct (except when the sequence reaches 1). On the other hand, D is

discrete.

It follows that if an R-Cz sequence does not converge to 1, then it must diverge to infinity.
Therefore, all R-Cz sequences of RY,_ diverge to infinity. O

4.2 Case 1: D is a finite union of intervals

Although we have not proved that D is composed of a finite number of RP intervals, we

will address this case without recourse to theorems or lemmas.

Suppose there exists a divergent R-Cz sequence {d}}, from which we extract its subse-

quence {d; }. Since {d] } diverges to infinity, as stated in Lemma 4.1, we have:

dy, < di <---<dj <

However, since the RP intervals are finite in number, there exists k > 0 such that for all
1 > 0, we have d’i’k ¢ RP. Therefore, there cannot not exist any divergent R-Cz sequence,
and D is empty.

4.3 Case 2: D is an infinite union of intervals

Definition 4.1. Let {v} }ienr be an R-Cz sequence and vf be one of its terms. Then, v
is the tree structure associated with the term v¥, which contains all its predecing terms at
all levels of descent (all its descendants), v¥ being the root of the tree. That is, all terms

that precede v¥ within R-Cz sequences, arranged in a tree structure (see Section 3.3).

Remark 4.1. If the first term vf of an R-Cz sequence is in 6N + 3, then, since terms in

6N + 3 have no preceding terms, T = vp .

Theorem 4.2. Let v} be a term of the R-Cz sequence {v'} and Uf// be a term of the R-Cz

sequence {vﬁ,}, the two sequences may be the same but v # vf,,.

/

Then, both T" and TV contain cm infinite number of terms, and if there is no ascending

or descending path from v to o ., we have TV N T% = .

Otheruwise, zf there is an ascendmg path from v to U/ (respectwely, from Uili to v?), then
TV C T (respectively, % C T%), and the set T \ T (respectively, T% \ T )

contains infinitely many terms of R-Cz sequences.
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Proof. First, according to Theorem 3.3, both T’ v and T%" are infinite sets, and if there

/
is no ascending or descending path from v? to v}, (i.e., no R-Cz sequence connecting one

term to the other), then Theorem 3.4 states that 7% N T = .

Otherwise, if there is an ascending path from v? to vgl (respectively, from vf’,/ to v?), then,
p/
7:/

/
considering v} as a descendant of v}, (respectively, v}, as a descendant of v}), we have

T C TY (respectively, TV C T%).
It also follows, since Theorem 3.3 states that Ufﬂl (respectively, v?) is the parent term of
infinitely many preceding terms, that TV \T% (respectively, T \T”f’ ) contains infinitely

many terms of R-Cz sequences. U

Proposition 4.1. If D is supposed to be non-empty, then R3,._ contains infinitely many

divergent R-Cz sequences, arranged in a tree structure whose root lies at infinity™.

Proof. Suppose D is non-empty. Then, by Theorem 4.1 RS, contains at least one diver-

gent R-Cz sequence.

Let {d7} be this sequence and let df be one of its terms (with & > 0 to avoid d} belonging
to 6N 4 3), and let 7% be the its associated tree (see Definition 4.1).

As stated by Theorem 3.3, d} has infinitely many distinct preceding terms that constitute
level 1 of 7%, in turn each term of level 1 has infinitely many distinct preceding terms

that constitute level 2 of 7%, and so on (d2 being the root).

Given that each such term lies in a distinct R-Cz sequence and that these sequences merge

at the term d}, it follows that they must be divergent as well.

By the same argument, the term dj ,, is associated with the tree T diﬂ, and like d? it has
infinitely many distinct preceding terms that constitute level 1 of T+ (among which
is d}), etc. And as with d}, all these terms belong to infinitely many divergent R-Cz

sequemnces.

The same holds for the subsequent terms of {d}}. Therefore, we have (with n > 1):

T% C T% C oo CT%n C -

As the sequence {d]'} diverges to infinity, this endless chain of strict inclusions yields
infinitely many divergent R-Cz sequences, arranged in a tree structure growing upward

without bound, whose root must therefore lie at infinity. 0

Thus, the divergent R-Cz sequences correspond to the paths of a tree structure that start

from a node, or a leaf when their first term is in 6N + 3, and ascend endlessly toward the

()We speak of the “root at infinity” as a metaphor, meaning simply that one can climb indefinitely up
the tree structure toward the root, without ever reaching it.
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root. The figure below illustrates this tree structure.

6N + 1 terms

in infinite number

6N + 3 terms 6N -+ 5 terms
in infinite number in infinite number
)|

!

6N + 1 terms

in infinite number

v

6N + 3 terms

in infinite number

) l

6N + 5 terms

in infinite number

|

!

6N -+ 1 terms

in infinite number

)

6N -+ 3 terms

in infinite number

l l

6N -+ 5 terms

in infinite number

Figure 4. Tree structure of the divergent R-Cz sequences

Proposition 4.2. The set RS cannot contain infinitely many divergent R-Cz sequences,

arranged in a tree structure whose root lies at infinity.
First proof (set-theoretic). We will proceed by direct proof.

Hypothesis
Let {d"} be a divergent R-Cz sequence and let " be its first term, then according to
Proposition 4.1:

is the union of the associated trees with all terms of {d}*}, such that:

T CT%h C...CTH C ...

Uncountability

The tree T9 is an infinitely branching tree whose root lies at infinity. As in the case of the
tree of the empty spaces in the proof of Theorem 3.5, the paths of 79, which correspond
to distinct divergent R-Cz sequences, are endless, but here, they never end when traced

back toward the root.
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Indeed, let p™ be such a path starting from a node n. Since the tree extends infinitely in
both directions, from the root to the nodes and from the nodes to the root, level counting
starts at 0 at the starting node and increases as one moves toward the root. Thus, p" is
of the form (p3,...,p7,...) € NN where p! is the local index of the i-th node (at level 7)
along the path, with ¢« € N. However, a complete enumeration of all paths is impossible,

as demonstrated below.

It must first be noted that Theorems 3.3 and 3.4, and Lemma 3.2 apply to all R-Cz
sequences, including the divergent ones. Then, let f : P — NN be a function defined as

follows:
f") =@ 0% --)

where P = {p* = (p},...,p’,...) }ien is the set of the paths from all nodes of Ty, to the
root. Let (p!,p?) € P?, with p' # p/, then there exists k such that pi # pJ, and we have:

FO) =W Do) # Wy D) = [

Hence, f is injective. Regarding surjectivity, let (ng,...,ng,...) € NV

Because the root of T¢ lies at infinity, and due to the recursive nature of Theorem 3.3,
which states that each parent term in 6N+ 1 or 6N + 5 generates infinitely many children
terms, which in turn generate infinitely many others, and so on ad infinitum, as a result
there are infinitely many terms (i.e., nodes) at each level of the tree, all distinct as stated

in Lemma 3.2.

Consequently, we can construct for all & € N, a reverse path (...,p},...,p§), from the
root to the node y, where for all j > 0, the node p{ is the parent of the node p?_,, such
that reversing it yields the path p¥ = (pg,...,p},...), and such that:

f®) =g, . ..of, ) =(no, ..., ng,...)

Hence, f is bijective. Since NV is uncountable and f is a bijection from P to NV, it
follows that P is also uncountable, and the complete enumeration of all paths is therefore

impossible.

Conclusion

Since Theorem 1.1 states that RS is in bijection with the countable set D, it follows that
RY,_ is also countable. However, insofar as each path in 79 corresponds to a divergent
R-Cz sequence, the uncountability of these paths highlights a contradiction, as an infi-
nite number of paths, composed of infinite sequences of nodes, cannot be reduced to a

countable set of finite indexes, and thus cannot be contained in a countable set.

()We recall that they lie alternately in 6N + 1, 6N + 3 and 6N + 5.
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This leads us to conclude that RY_ cannot contain infinitely many divergent R-Cz se-

quences, arranged in a tree structure whose root lies at infinity. U

Second proof (combinatorial). As Theorem 3.6 states that the size of the R intervals
are bounded, there exists L € N* such that for all ¢ > 0, RZD < L.

It follows that there exists ny < L, such that at least ng divergent R-Cz sequences can lie
within the RP intervals. Now, since the root lies at infinity and there are infinitely many
distinct nodes at each level of the tree, there exists a subfamily R = {{d}’};en C RS,
such that for all X € N and for all (jo,j;) € N*

{dfojo}oglogx a {dfljl }ogzlgx =0.

In other words, there exist infinitely many pairwise disjoint divergent R-Cz sequences.

We will refer to these sequences as DR-Cz sequences. Then, let:

k
Iy = J {RP € R” : 3j > 0 such that d% € R"}

n=0

be the set of RP intervals which contain the k first terms of all DR-Cz sequences, ordered

in ascending order.

For k = 0, since the size of the RP intervals is bounded, I, contains infinitely many of

these intervals, and some other RP intervals can lie between the intervals of I.

For k > 1, since the term d’ of the sequence {d},’} is at a determined distance from the
term d” @ it must lie either in the same interval as the term d;’ , or in one of the

intervals that precedes or follows it.

Insofar as it applies for all 7, the terms dzj of the DR-Cz sequences can lie in infinitely

many new RP intervals, and we have the following chain of inclusion:

LhCchLC---Clh1CI

Finally, considering (i) that the length of the RP intervals is at most L, and (ii) that there
is at most a finite number of RY intervals between each interval of Iy, there exists a rank
K > 1 in the DR-Cz sequences, from which all RP intervals will completely be filled by

terms of the DR-Cz sequences, and we will have:

Iy =Ig1=Igio ="

3dy7 | +1

@if dy? | <dy then d}’ = 5
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Therefore, we conclude that RS, cannot contain infinitely many divergent R-Cz sequences,

arranged in a tree structure whose root lies at infinity@. U

Remark 4.2. The reader will note that a single divergent R-Cz sequence is sufficient
to generate a tree structure, giving rise to an uncountable number of divergent R-Cz

SeEquences.

Theorem 4.3. If D 1is supposed to be non-empty, the contradiction that arises between
Propositions 4.1 and 4.2, leads to the conclusion that D must be empty. Consequently, all

R-Cz sequences converge to 1.

Proof. Suppose D is non-empty. Then Proposition 4.1 states that Rdoz contains infinitely
many divergent R-Cz sequences, whereas Proposition 4.2 states that Rdcz cannot contain
such a number of divergent R-Cz sequences. These two propositions cannot be true

simultaneously.

The only way to resolve this contradiction is to conclude that D must be empty. Indeed,
if D is empty, there is no longer any possibility of an infinite number of divergent R-
Cz sequences arranged in a tree structure, and there is no longer a contradiction between

Propositions 4.1 and 4.2; both propositions are true. There is no other possible resolution.

As D is empty, it follows that C' = 2N + 1, which allows us to conclude that all R-Cz

sequences converge to 1. 0

Remark 4.3. The proof of Theorem 3.5 and the set-theoretic proof of Proposition 4.2

together constitute a two-fold cardinality argument, indeed:

e The proof of Theorem 3.5 demonstrates that even purely convergent R-Cz sequences,

iof spaced, give rise to an uncountable tree of empty spaces;

e The set-theoretic proof of Proposition 4.2 demonstrates that any hypothetical diver-
gent R-Cz sequence would likewise generate an uncountable tree of divergent R-Cz

Sequences.

In either scenario, spacing or divergence, the same cardinality contradiction arises, rein-

forcing the consistency of the overall approach.

It is also worth noting that even in the absence of Theorem 3.5, and thus
without considering the structure of D, the set-theoretic proof of Proposition

4.2 alone suffices to establish the convergence of all R-Cz sequences.

() Combinatorially speaking, we could say that Ry x Rg > Ry x L.
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Ultimately, beyond the R-Cz sequences, this paper reveals a hierarchical relationship be-
tween all odd numbers through the recursive formula which characterizes the Pt-sequences:

3q;-4— %, ifge6N+1

Sji_

)

Where (j,7) € N? and the numbers s;; are the children of the parent number g;. The
figure below illustrates these relationships, with the number 1 as the ancestor of all odd

numbers.

000 §C
556

Figure 5. Tree of odd numbers

Since sp¢ = % x 1 x 4% — % = 1, the number 1 is its own parent, and numbers such as

21,3,453,69,75, ..., since they are in 6N + 3, do not have any child numbers.

5 Conclusion

As the first step, we defined the R-Cz sequences, which are the Collatz sequences without
their even terms. As the first essential result, we established that the R-Cz sequences do
not exhibit any cycles other than the cycle of length 1 and value (1). We then studied their
properties in the case where they converge, particularly highlighting their tree structure,
which can be viewed either as a collection of sequences converging to the penultimate

terms and then to the root, or as the descendants generated through the Pt-sequences.
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This led us to establish Theorem 3.5, which constitutes the central result of Section 3.
Then, the consequences that can be inferred from this theorem, when combined with the
fact that no sequence has any cycle other than the trivial one, gave rise to a contradiction

regarding the set RY,_, which is supposed to contain all divergent R-Cz sequences.

Finally, this contradiction could only be resolved through the realization that D is empty,
leading to the conclusion that all R-Cz sequences converge to 1. The main steps of
the proof can be represented graphically as follows, where the black arrows indicate the

mathematical implications.

Reformulation
of the sequences:

R-Cz sequences

Structure
of convergent

R-Cz sequences

)’

Non-convergent

R-Cz sequences

Cycle 1 as
unique cycle of

R-~Cz sequences

Coherence

Divergent

of convergent
R-Cz sequences
R-Cz sequences

— >
All R-Cz All Collatz
sequences sequences
converge converge

Figure 6. Diagram of the proof

Since an R-Cz sequence is derived from a Collatz sequence by removing its even terms,
the fact that all R-Cz sequences converge to 1 demonstrates that all Collatz sequences

eventually reach the cycle (1,4,2). This completes the proof of the Collatz conjecture.
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6 Appendix

6.1 General term of the sequence {u]'}

We know that the formula is valid for the third term in the sequence. Suppose that for
[ < L, where L > 2:

3(8p+ 1) + T (371 250
225=0 Qi

D
]

And calculate v} .1 as a function of vf:

31(3p+1)+22;(1) <3l7171.223-:0 aj)
3 +1
v +1

222:0 )

v =
1 Qu+1 2141

And we get:
3l+1(3p T 1) + Zlizo (31—i . 22;‘:0 aj)
93t

V41 =
Therefore, for all [ € N*:

3(3p +1) + S (371220

v, =

p
l

222:0 Qi
U
6.2 Classes of penultimate terms
The fact that the penultimate term v, = 227;’1, where n € N*, n = 3k 4+ a and k € N,

lies in 6N + 3, 6N + 1 or 6N + 5 depends on whether a =0, a =1 or a = 2.

First case a =0
The penultimate term <U1?p = 22(3k)_1> € 6N + 3, if there exists &’ € N such that 2= =

3 3
3 + 6k’, which is equivalent to:

26F-1 _5=0 (mod 9)

For k=1,2°—-5=27=0 (mod 9), and suppose that for k = kg, where ky € N* \ {1},
we have 26F0=1 — 5 =0 (mod 9).
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Then, for k = kg + 1, we have:

20k )=l 5 = (200071 —5) +63-2%071 =0 (mod 9)

Therefore, for all £ € N*| % € 6N + 3.

Second case a =1
22(3k+1) _1
3

26k+2 1

The penultimate term (v{fp = ) € 6N+1, if there exists ' € N such that =5— =

1 + 6k, which is equivalent to:

20+l _ 2 =0 (mod 9)

For k=0,2—2=0 (mod 9), for k=1,2"—2=126 =0 (mod 9), and suppose that for
k = ko, where ko € N*\ {1}, 26kl —2 =0 (mod 9).

Then, for k = kg + 1 we have:

0o+ D)+1 _ 9 = (g0kotl _ 9y 4 63. 200+ = (mod 9)

Therefore, for all k£ € N, % € 6N + 1.

Third case a = 2

. 2(3k+2) _
The penultimate term (vgp =27l

3 ) € 6N+5, if there exists & € N such that —26‘“34_1 -

5+ 6k, which is equivalent to:

20F3 _8=0 (mod 9)

For k=0,8—8=0 (mod 9), for k =1,2 -8 =504 =0 (mod 9), and suppose that for
k = ko, where kg € N*\ {1}, 26ko+3 — 8 =( (mod 9).

Then, for k = kg + 1 we have:

0o +1)+3 _ g = (90kot+3 _ 8y 4 63.2%%0+3 = (0 (mod 9)
Therefore, for all k£ € N, % € 6N + 5. O

6.3 Classes of preceding terms

We are going to demonstrate that the term v} of the R-Cz sequence {v]'}, when it is
preceded by terms (i.e., when it is in 6N + 1 or 6N + 5), they are alternately in 6N + 1,
6N + 3 and 6N + 5.

First case v/ € 6N* + 1

Since v € 6N* + 1, its preceding terms are of the form

2RORED-L it follows that:
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e if £ =0 (mod 3), its preceding terms are alternately 6N + 1, 6N + 5 and 6N + 3,
depending on whether a;; € 6N + 2, 6N + 4 or 6N*;

e if £ =1 (mod 3), its preceding terms are alternately 6N + 3, 6N + 1 and 6N + 5,
depending on whether a;; € 6N + 2, 6N + 4 or 6N*;

e and finally, when k£ = 2 (mod 3), its preceding terms are alternately 6N+ 5, 6N + 3
and 6N + 1, depending on whether a; € 6N + 2, 6N + 4 or 6N*.

Because the demonstration is the same for ¥ = 0 (mod 3), k = 1 (mod 3), and k£ = 2

(mod 3), we will only demonstrate the case k =1 (mod 3).

For (k, ;) € {(7,2),(7,4),(7,6)}, we have respectively:

2 _
%:9€6N+3, a; € 6N + 2
2% %71
%:37661\”1, a; € 6N + 4
6 _
¥:149€6N+5, a; € 6N*

Suppose that for (k,«a;) € {(7,6a¢ + 2), (7,600 + 4), (7,600)}, where oy € N*, we have
respectively:

2002 57

3 EO6N+3 = 20T 7 _5=0 (mod 9)

20c0+4d 57 ]
3

2600 7 — 1
3

EO6N+1 <= 200t x7_2=0 (mod9)

EO6N+5 = 20271 x7_8=0 (mod?9)
For (k,c;) € {(7,6(a0 4+ 1) +2),(7,6(cvg + 1) +4),(7,6(cg + 1))}, we have respectively:
200t DHL w7 5 = (2600t w7 _5)+63x7=0 (mod9)

26(00 43 o 7 _ 9 = (260018 5 7 _2) 1 63x 7=0 (mod 9)

26(0tD)—1 5 7 g8 = (20001 x 7 _8)4+63x7=0 (mod 9)

Suppose that for (k,a;) € {(6ko + 1, 1), (6ko + 1, ), (6ko + 1, r3) }, where kg € 3N* + 1
and (o, a9, a3) € (6N +2) x (6N +4) x 6N*, we have respectively:

21 (6kog+1) —5=0 (mod 9)

2°%(6kg+1) —2=0 (mod 9)
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29 (6ky+1) —8=0 (mod?9)
For (k,a;) € {(6(ko+3)+1, 1), (6(ko+3)+1, az), (6(ko+3)+1, a3)}, we have respectively:
201 (6(ko +3) + 1) — 5 = (2% (6ko + 1) — 5) + 18 x 22 =0 (mod 9)

292 (6(ko +3) + 1) — 2= (2°2(6ko+ 1) —2) + 18 x 2°2 =0 (mod 9)

29(6(ko+3)+1) —8=(2(6ky+ 1) —8) + 18 x 2 =0 (mod 9)

Therefore, when v? is of the form w, with k =1 (mod 3), its preceding terms are
alternately in 6N + 1, 6N + 3 and 6N + 5, depending on whether «; € 6N + 4, 6N + 2 or
O6N*.

Second case v € 6N + 5

Since v € 6N + 5, its preceding terms are of the form 2% (6k+5)—1

3 , it follows that:

e if £k =0 (mod 3), its preceding terms are alternately in 6N + 3, 6N + 1 and 6N + 5,
depending on whether a; € 6N+ 1, 6N + 3 or 6N + 5;

e if k=1 (mod 3), its preceding terms are alternately in 6N + 1, 6N + 5 and 6N + 3,
depending on whether a; € 6N + 1, 6N + 3 or 6N + 5;

e and finally, when & = 2 (mod 3), its preceding terms are alternately in 6N + 5,
6N + 3 and 6N + 1, depending on whether «; € 6N + 1, 6N + 3 or 6N + 5.

Because the demonstration is the same for k£ = 0[3], £ = 1[3], and k = 2[3], we will only

demonstrate the case k = 0[3].

For (k, ;) € {(5,1),(5,3),(7,5)}, we have respectively:

9l % 51
—:%———:366N+3,<m66N+1
9 %51
TS = 13€6N+1, ai€6N+3
9 %51
—:%L—f:%€6N+5,(%E6N+5

Suppose that for (k, a;) € {(5,6a0+1), (7,60a0+3), (7,600 +5)}, where oy € N*, we have
respectively:

960+l 5 5 — 1
3

€E6N+3 = 20 x5-5=0 (mod?9)

26a0+3 5 1
3

EO6N+1 = 20272 x5 _2=0 (mod9)
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26ao+5 x5—-1
3

E6N+5 = 200 x5 _8=0 (mod9)
For (k, ;) € {(7,6(a0+1)+1),(7,6(cg+1)+3),(7,6(cvg+1)+5)}, we have respectively:
26(@0tl) 5 5 5= (2620 x5 -5)+63x5=0 (mod 9)
20(e0t)+2 5 5 9 = (2090F2 5 5-2) 463 x5=0 (mod 9)
20(cot)H4 o 5 8 = (209 x5 -8)4+63x5=0 (mod9)

Suppose that for (k, «;) € {(6ko + 5, 1), (6ko + 5, ), (6ko + 5, a3) }, where kg € 3N* + 1
and (o, g, a3) € (6N + 1) x (6N + 3) x (6N + 5), we have respectively:

24 (6ky +5) —5=0 (mod?9)
22(6ky+5) —2=0 (mod9)
29(6kg +5) —8=0 (mod 9)

Then for (k,a;) € {(6(ko + 3) + 5, 1), (6(ko + 3) + 5, a2), (6(ko + 3) + 5,a3)}, we have

respectively:
20(6(ko +3)+5) —5= (2" (6ky+5) —5) + 18 -2 =0 (mod 9)

22(6(ko +3)+5) —2=(2*2(6ko +5) —2) +18-22 =0 (mod 9)
29 (6(ko +3) +5) —8=(2%(6ko+5) —8) + 182 =0 (mod 9)

%, with £ = 0 (mod 3), its preceding terms are
alternately in 6N + 3, 6N + 1 and 6N + 5, depending on whether «; € 6N + 1, 6N + 3 or

6N + 5. U

Therefore, when v? is of the form

6.4 Existence of ¢ in Lemma 3.7

For all (ko, k1) € Ip; X Ip;, we have:

ki1 ki1
k1,0 — Sko,0 = Z @1 PV — @i Y = ey, + Z B (g1 — q5)
J=ko J=ko

Where £, € R is a correction factor. Now, considering that for all k£ > K, 3®* <1 and

the Pt-sequences do not intersect or overlap, we obtain, after subtracting the term oy, ,
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from the previous equation:

k1—1

€k — Oko ey T Z BO* (g — ¢5) <y (kr — ko)
J=ko

Where ¢, > 2. If for all L € N*, there existed k; such that c;, > L, this would contradict
our hypothesis that for all £k > K, 8®* < 1, which implies that the distance of Definition
3.6 between two successive Pt-sequences is necessarily bounded. Therefore, there exists
¢ > 2 such that for all kq, ¢, <ec. O

6.5 Empty spaces creation in the proof of Theorem 3.5

Under the hypothesis of the proof of Theorem 3.5, we will demonstrate that, regardless of

the number of Pt-sequences generated, the creation of empty spaces is an endless process.

Unbounded empty spaces

Considering that C' is discrete, and that new empty spaces are formed by subdividing
previous ones into which terms are inserted, the creation of new empty spaces could only
cease if their size became bounded. However, such a scenario cannot occur. Indeed, first
by Lemma 3.4, for all (j,7) € N? (to simplify, here Ip; = N), we have:

1
3
5 ifg e 6N+1

30 -4 —

Where ¢; is the parent term of the Pt-sequence {s;;}. Let f; = Bq;, where g = % or
depending on whether ¢; € 6N + 5 or 6N + 1.

Ol

Then, as we have assumed that for all K € N, there exists &k > K such that 3®* > 1,

according to Lemma 3.6, the sequence {f;};en grows on average exponentially.

Let {s;;}o<j<s, with J > 0, be the family of the first J Pt-sequences ordered by their first

term in ascending order. Then we have:

80,0 < 810 < -+ < S0

Given that no Pt-sequence shares terms with another, there exists a sequence {(l,,, k) }nen
such that:

J
{81005 Stk -+ Stk -+ } = U{Sm}
j=0

And such that:

Sloko < Slikr < 0 < Sk, <0
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Finally, since for all (j,i) € {0,...,J — 1} X N;sj11; — s;; = 4'(fj+1 — f;), and for all
(7,i) €{0,...,J} x N, 5,41 = 4s;; + 1, it follows that the sequence {s;, 1, }nen grows on

average exponentially.

Hence, for all L € N*, there exist (z,y) € N? with z+1 = y, such that ] Slykes Slyky [ NnC=
(), and such that:
Slyky = Slpks — 1>1L

Therefore, as J can be taken arbitrarily large, no matter how many Pt-sequences are
generated, there will always be empty spaces, at every level of the tree structure, whose

size remains unbounded.

Cardinality
Let E. be the set of empty spaces created from level 1 to z. At level 1, F; contains an
infinite number of empty spaces, located between the penultimate terms. From level 2,

and for subsequent levels, starting from level 2, two phenomena occur:

e the predominantly rightward shift of the Pt-sequences may prevent further subdi-

vision of some empty spaces;

e as demonstrated above, there are infinitely many empty spaces of unbounded size.

Consequently, from level 2, depending on the Pt-sequences generated, each empty space
can undergo one of four possible outcomes: either it ceases to be subdivided and has no
descendants, or its size is reduced because terms of Pt-sequences are inserted at its edges,
or it is subdivided into at least two parts, or finally, it remains unchanged and becomes

its own descendant (i.e., it is present at the next level).
For all z > 2, let:

e [7° be the set of empty spaces that cease to be subdivided at level z, due to the
rightward shift of the Pt-sequences;

e 5" be the set of empty spaces resulting from subdivision of empty spaces at level

z—1;

e and finally let Ef* and E™4 be the sets of empty spaces that are respectively un-

changed or reduced relative to level z — 1.

Then we have:
z—1

E.=|JErUE™UENU B

=2

Considering that at each level z > 2, infinitely many Pt-sequences are generated, whose

terms grow exponentially, and there are infinitely many empty spaces of arbitrary size, it
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follows that at each level z, infinitely many of these empty spaces will be subdivided, at

least into two parts, giving rise to infinitely many new empty spaces.

Therefore, without taking into account the other sets, we conclude, under the hypothesis
of the proof of Theorem 3.5, that the creation of empty spaces is an endless process,

ensuring that the branching structure of the tree keeps growing indefinitely. 0

Remark 6.1. If we were to suppose that the size of the empty spaces becomes bounded,
then the Pt-sequences would cease to move further apart from each other. As a result,
there would exist K € N such that for all k > K, ®* < 1, which would contradict the
hypothesis itself and render Theorem 3.5 trivially true.

6.6 Interdependencies between proofs of mathematical statements

The figure bellow shows the interdependencies between proofs of lemmas, theorems and

propositions.
[
7| Lemma _ Theorems Theorems
3.1 3.1 to 3.2 2.1 to 2.3
1 Lemma Theorem
. 3.2 3.4
Lemmas N Theorem Lemma Theorem | Theorem Theorem Theorem
3.3t0 3.6 3.5 3.7 3.6 3.7 4.1 4.2
&—TJ
Proposition 4.2 Proposition
combinatorial 4.1
Theorem Proposition 4.2 Theorem
h— 3.3 set-theoretic 4.3
Theorem Theorem
3.4 1.1

Figure 7. Interdependencies between proofs of mathematical statements

7 Glossary
N: NU{-1}.
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{v!}ieas R-Cz sequence whose first term is v”; = p.

3P+ 1,

a;: 2 raised to the power of «;, such that v! = is odd.

7

Re., RS, RY,.: sets containing all R-Cz sequences, all convergent R-Cz sequences, and all

divergent R-Cz sequences, respectively.

C" set of the terms of all convergent R-Cz sequences.

D: complement of C' in 2N + 1.

{b;}i>0: sequence of the penultimate terms, ordered in ascending order.

{8ji}Giyerxn : family of the Pt-sequences corresponding to all convergent R-Cz se-

quences. Each sequence contains the preceding terms of the parent term g;.
B%: shift factor of the parent term g;.

p@F: average shift factor of the first k + 1 Pt-sequences.

RP: interval [a;, b;] in D.

RP: set of RP intervals.

d®*: average distance between two consecutive Pt-sequences, among the first k& + 1 Pt-

sequences (see Definition 3.6).

{d} }1en: divergent R-Cz sequence.

{d} Yren: strictly increasing subsequence of the divergent R-Cz sequence {d;'}.
T,s: tree of the empty spaces of the proof of Theorem 3.5.

T%: tree associated with the term d? of the divergent R-Cz sequence {d}.

T4 tree of the divergent R-Cz sequences.
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