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Abstract. Using a comprehensive approach, this paper aims to demonstrate, clearly and
rigorously, the validity of the Collatz conjecture. To this end, the original 3n+1 iteration
is reformulated by isolating the odd terms into sequences referred to as R-Cz sequences.
These sequences are analyzed through their structural properties and their distribution
among the odd natural numbers. As a first essential result, it is shown that they do not
admit non-trivial cycles: the only possible cycle is the trivial one, of value and length 1.

Two independent proofs that all R-Cz sequences converge are then presented. The first,
combinatorial in nature, relies on the finiteness of intervals that could possibly separate
terms of the sequences. The second, set-theoretic, is based on a contradiction between the
countability of the odd integers and the uncountable cardinality of the hypothetical di-
vergent R-Cz sequences. Both methods lead to the same conclusion: all Collatz sequences
eventually enter the cycle (1, 4, 2).
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1 Introduction

First of all, let us define a Collatz sequence. Let {un}n∈N be the sequence such that
u0 = p, where p∈N∗, and such that:

for n∈N∗, un =

{
3un−1 + 1 if un−1 is odd

un−1

2
if un−1 is even

According to the conjecture, there exists l∈N∗ such that ul = 1, ul+1 = 4, ul+2 = 2, ul+3 =

1, ul+4 = 4, ul+5 = 2, and so on. In other words, from rank l the sequence enters a cycle
that repeats the numbers 1, 4, 2 ad infinitum (see [2], [3], [4] and [6] for the background
of this conjecture). We can express this sequence in another way, indeed, if p is odd then
we have:

u1 = 3p+ 1 is even,

u2 =
3p+ 1

21
, if u2 is even then u3 =

3p+ 1

22
,

. . . ,

until u1+α0 =
3p+ 1

2α0
is odd.

Let :
v0 = u1+α0 =

3p+ 1

2α0

Where α0 is the exponent corresponding to the number of times u1 must be divided by 2

to obtain an odd number. Repeating the same process, we have:

u1+α0+1 = 3u1+α0 + 1 is even,

u1+α0+1+1 =
3u1+α0 + 1

21
, if u1+α0+1+1 is even then u1+α0+1+2 =

3u1+α0 + 1

22
,

. . . ,

until u1+α0+1+α1 =
3u1+α0 + 1

2α1
is odd.

Let:

v1 = u1+α0+1+α1 =
3u1+α0 + 1

2α1

Where α1 is the exponent corresponding to the number of times u1+α0+1 must be divided
by 2 to obtain an odd number. By reformulating v1, we have:

v1 =

(
3
(
3p+1
2α0

)
+ 1
)

2α1
=

3 (3p+ 1) + 2α0

2α0+α1
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And by an easily verifiable recurrence (see Appendix 6.1), we obtain that for all l∈N∗:

vl =
3l (3p+ 1) +

∑l−1
i=0(3

l−1−i(2
∑i

j=0 αj))

2
∑l

i=0 αi

=
3l (3p+ 1)

2
∑l

i=0 αi

+
l−1∑
i=0

3l−1−i

2
∑l

j=i+1 αj

The resulting sequence {vl}l∈N has all its values in 2N+1, and it is equal to the sequence
{un}n∈N without the first term and the even-valued terms of the latter. Thus, the cycle
of length 3 and values (1, 4, 2) of the sequence {un} corresponds to the cycle of length 1
and value (1) of the sequence {vl}.

If p is even, there exists α∈N∗ such that p = 2αq, where q∈2N + 1, and it is sufficient to
replace p with q in the expression of the term v0, which does not change the demonstration.

Definition 1.1. Let f = 2αp, where α∈N and p∈2N + 1. The sequence {vpl }l∈N , the
so-called reformulated Collatz sequence, is defined as follows:

vpl =


p if l = −1

3p+1
2α0

if l = 0

3l(3p+1)

2
∑l

i=0
αi

+
∑l−1

i=0
3l−1−i

2
∑l

j=i+1
αj

if l > 0

Where p in the sequence {vpl } means that the sequence depends on p, α0 is the exponent
such that vp0 is odd, the αi, for i ∈ {1, . . . , l}, are the exponents such that vpi = 3vi−1+1

2αi
is

odd, and N = N ∪ {−1}.

Throughout the paper, this type of sequence will be called R-Cz sequence, and we will
consider as many different sequences as there are different values of p.

Definition 1.2. Let RCz =
{
{vpjl }

}
(j,l)∈N×N be the set of all R-Cz sequences, where pj ∈

2N + 1. Let Rc
Cz and Rd

Cz be the sets of convergent and non-convergent R-Cz sequences,
respectively, then RCz = Rc

Cz ∪Rd
Cz.

Theorem 1.1. Let f : 2N+ 1 → RCz be a function defined for all p ∈ 2N+ 1 as follows:

f(p) = {vpl }

Then f is bijective.

Proof . Let (p, p′) ∈ (2N + 1)2 such that p ̸= p′. Then, since {vpl } and {vp
′

l } are distinct
R-Cz sequences (at least by their first term), we have:

f(p) = {vpl } ≠ {vp
′

l } = f(p′).
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Hence, f is injective. Let {vpl } ∈ RCz , by definition we have f(p) = {vpl }. Therefore, f is
bijective. □

2 Cycles of R-Cz sequences

We are going to study whether an R-Cz sequence can enter a cycle, under what conditions
and what cycles are possible. We will begin with cycles of lengths 1, 2 and 3, and then
move to study the general case. The mathematical expression of the terms in the sequence,
involving the exponents αi

(i), is the same as the one presented in the introduction, and to
simplify matters, we will start indexing the exponents from 0.

The common condition to the cycles of lengths 2, 3 and t lies in the fact that the values
within a cycle must be distinct. Otherwise, due to the definition of the sequence {vpl },
the repetition of a value would result in a cycle of a shorter length.

2.1 Cycle of length 1

It will be shown that the only cycle of length 1 that any R-Cz sequence {vpl } can enter,
is the cycle of value (1).

Theorem 2.1. For all p ∈ 2N+1, the only cycle of length 1 that the R-Cz sequence {vpl }
can enter from a certain rank is the cycle of value (1).

Proof . The sequence {vpl } has a cycle of length 1, if there exists L∈N such that for any
l≥L, vpl+1 = vpl . Let q the value of the term of rank l in the sequence, then vpl+1 = vpl = q

if:
q =

3q + 1

2α0
=⇒ q =

1

2α0 − 3

This is only possible if 2α0 = 4 =⇒ α0 = 2, and it follows that q = 1. Reciprocally, we
check that if vpl = 1, then for all k∈N∗, vpl+k = 1.

The only cycle of length 1 into which the sequence {vpl } can enter from a certain rank is
therefore the cycle of value (1), which corresponds to the cycle of values (1, 4, 2) in the
sequence {un}. □

2.2 Cycle of length 2 or 3

It will be shown that no R-Cz sequence has either a cycle of length 2 or length 3.

Theorem 2.2. For all p ∈ 2N+ 1, the R-Cz sequence {vpl } has neither a cycle of length
2 nor a cycle of length 3.

(i)We recall that for all i ∈ N, αi ≥ 1.
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Proof there is no cycle of length 2. The sequence {vpl } has a cycle of length 2, if
there exists L∈N such that for all l≥L, vpl+2 = vpl . Let q be the value of the term of rank
l in the sequence, then vpl+2 = vpl = q if:

q =
3 (3q + 1) + 2α0

2α0+α1
=⇒ q =

3 + 2α0

2α0+α1 − 9

This assumes that 2α0+α1 > 9, which implies α0 + α1≥4. For α0 + α1 = 4, we find that
q = 1 when (α0, α1) = (2, 2), and that q is not an integer for the other values of (α0, α1).
For α0 + α1 > 4, q is not integer because 2α0+α1 − 9 > 3 + 2α0 , for all α0≥1.

Since we have established that the sequence becomes stationary from rank l when q = 1,
the sequence {vpl } cannot enter a cycle of length 2. □

Proof there is no cycle of length 3. The sequence {vpl } has a cycle of length 3, if
there exists L∈N such that for all l≥L, vpl+3 = vpl . Let q be the value of ther term of rank
l in the sequence, then vpl+3 = vpl = q if:

q =
32 (3q + 1) + 3.2α0 + 2α0+α1

2α0+α1+α2
=⇒ q =

9 + 3.2α0 + 2α0+α1

2α0+α1+α2 − 27

This assumes that 2α0+α1+α2 > 27, which implies α0 + α1 + α2≥5. For α0 + α1 + α2 = 5,
q is not integer. For α0 + α1 + α2 = 6, we obtain that q = 1 when (α0, α1, α2) = (2, 2, 2),
and q is not integer for the other values of (α0, α1, α2).

Finally, for α0 + α1 + α2 > 6, q is not integer because :

2
(
2α0+α1+α2 − 27

)
>
(
9 + 3.2α0 + 2α0+α1

)
Therefore, as in the previous case, we conclude that the sequence {vpl } cannot have a cycle
of length 3. □

2.3 General case

Having demonstrated that no R-Cz sequence can exhibit a cycle of length 2 or 3, we now
demonstrate that no R-Cz sequence can have a cycle of length greater than or equal to 4.

Theorem 2.3. Let t ≥ 4, for all p ∈ 2N + 1, the R-Cz sequence {vpl } has no cycle of
length t.

Proof . The sequence {vpl } has a cycle of length t≥4, if there exists L∈N such that for
all l≥L, vpl+t = vpl . Let q the value of the term of rank l in the sequence, such that q > 1

to exclude the cycle of length 1 and value (1), then vpl+t = vpl = q if:

q =
3t−1(3q + 1) +

∑t−2
i=0

(
3t−2−i

(
2
∑i

j=0 αj

))
2
∑t−1

i=0 αi
=⇒ q =

3t−1 +
∑t−2

i=0

(
3t−2−i

(
2
∑i

j=0 αj

))
2
∑t−1

i=0 αi − 3t
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The cyclicity condition for a cycle of length t can also be expressed, such that for any
k∈N∗,vl+kt = vl, which is equivalent to:

q =
3kt−1 +

∑kt−2
i=0

(
3kt−2−i

(
2
∑i

j=0 αj

))
2
∑kt−1

i=0 αi − 3kt

Hence, for all k ≥ 2, vpl+t = vpl+kt, that is:

q =
3t−1 + C1

2e1 − 3t
=

3kt−1 + Ck

2ek − 3kt

Where:

• e1 =
∑t−1

i=0 αi and C1 =
∑t−2

i=0

(
3t−2−i · 2

∑i
j=0 αj

)
• ek =

∑kt−1
i=0 αi and Ck =

∑kt−2
i=0

(
3kt−2−i · 2

∑i
j=0 αj

)
This yields:

2e1
(
3kt−1 + Ck − 2ek−e1 · 3t−1 − 2ek−e1 · C1

)
= 3t

(
Ck − 3kt−t · C1

)
Let :

• A = 3kt−1 + Ck − 2ek−e1 · 3t−1 − 2ek−e1 · C1

• B = Ck − 3kt−t · C1

Finally, we find that the cyclicity condition reduces, for all k ≥ 2, to the following equation:

2e1A = 3tB (2.1)

First case A = 0 and B = 0

The equation (2.1) can have solutions if A = B = 0. However:

B =
kt−2∑
i=0

3kt−2−i.2
∑i

j=0 αj −
t−2∑
i=0

3kt−2−i.2
∑i

j=0 αj =
kt−2∑
i=t−1

3kt−2−i.2
∑i

j=0 αj > 0

The term B is a series that diverges to infinity as k −→ +∞, and given that it is always
strictly positive, this case is excluded.

Second case A < 0 and B > 0

If A < 0 then 2e1A < 3tB, this case is also excluded.
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Third case A > 0 and B > 0

As 2 and 3 are prime numbers, and the factorization of an integer into prime factors is
unique, according to the equation (2.1) we have:

A = 3tm and B = 2e1m

And because A is odd and B even, m∈2N+1. Insofar as we are considering the possibility
that the sequence {vpl } can have a cycle length of t, for all i ∈ {0, . . . , t− 1, . . . , kt− 2},
according to Definition 1.1, we will have αi ∈ {α0, . . . , αt−1}.

Then, since A and B depend on k, the equations A = 3tm and B = 2e1m have solutions,
if there exist m ∈ 2N + 1, t ≥ 4 and (α0, . . . , αt−1) ∈ (N∗)t, such that for all k ≥ 2,
A = 3tm and B = 2e1m.

Concerning the equation B = 2e1 , for m = 1, for all t≥4 and for all (α0, . . . , αt−1)∈ (N∗)t,
it suffices to take k = 2 to obtain B > 2e1m.

Now, suppose there exists m > 1, t≥4 and (α0, . . . , αt−1)∈ (N∗)t, such that for some
k≥2, B = 2e1m, then, given that B diverges to infinity as k → +∞, and that it is possible
to take k as large as desired, it would be sufficient to consider k + 1 for that B > 2e1m

(since 2e1m does not depend on k).

Therefore, there exists no m∈2N + 1, t ≥ 4 and (α0, . . . , αt−1) ∈ (N∗)t, such that for all
k≥2, we have B = 2e1m, and thereby the equation (2.1) has no solution.

This implies that for all p∈2N + 1, no R-Cz sequence can exhibit a cycle of length t≥4,
and it also confirms that any R-Cz sequence does not have a cycle of length 2 or 3, since
nothing prevents t from taking the value 2 or 3 in equation (2.1). □

3 R-Cz sequences converging to 1

In this section, we will study the convergent R-Cz sequences (i.e., those that eventually
reach 1) to determine their relationship to the set 2N + 1. This will lead us to partition
this set into the subsets 6N+ 1, 6N+ 3 and 6N+ 5.

3.1 Penultimate terms

Since section 2 has established that the only cycle of length 1 an R-Cz sequence can have,
is the cycle with value (1), it follows that if an R-Cz sequence converges, it must converge
to 1. This implies that its penultimate term (the term preceding 1) is of the form 22n−1

3
,

where n ∈ N∗ \ {1}.

Theorem 3.1. If the R-Cz sequence {vpl }l∈N converges to 1, then there exists k ∈ N such
that vpk−1 =

22n−1
3

, where n ∈ N∗ \ {1}, and such that vpk = 1.
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Proof . Let us suppose that the sequence {vpl } converges to 1, and let k be the first index
for which vpk = 1.

Given that vpk−1 ∈ 2N+ 1, we have:

vpk =
3vpk−1 + 1

2α
= 1 ⇐⇒ vpk−1 =

2α − 1

3
⇐⇒ 2α − 1 ≡ 0 (mod 3)

For α = 1 =⇒ 2 − 1 ≡ 1 (mod 3) and for α = 2 =⇒ 4 − 1 ≡ 0 (mod 3). We prove
by induction, assuming that for α = 2α0 we have 22α0 − 1 ≡ 0 (mod 3), where α0 ∈ N∗,
that:

22(α0+1) − 1 ≡ (3 + 1)× 22α0 − 1 ≡ 3× 22α0 + (22α0 − 1) ≡ 0 (mod 3)

And assuming that for α = 2α0 + 1 we have 22α0+1 − 1 ≡ 1 (mod 3), that:

22(α0+1)+1 − 1 ≡ (3 + 1)× 22α0+1 − 1 ≡ 3× 22α0+1 + (22α0+1 − 1) ≡ 1 (mod 3)

Therefore, the penultimate term of the convergent R-Cz sequence {vpl } is of the form
22n−1

3
, where n ∈ N∗ \ {1}. This sequence being arbitrary, it applies to all convergent

R-Cz sequences. □

This implies there are infinitely many distinct penultimate terms, each belonging to a
distinct convergent R-Cz sequence. In all that follows, we will refer to vn

bp
as the penul-

timate term of the convergent R-Cz sequence {vp
l }, where bp is its index in the sequence

and n is the variable n in 22n−1
3

.

3.2 Preceding terms

By going through the convergent R-Cz sequences, from their penultimate term vnbp to
their second term vp0, we will study the preceding terms; first, those just preceding the
penultimate terms, and then the other ones.

Let us recall that if a term, whether it is the penultimate term or any other term of a
convergent R-Cz sequence, is immediately preceded by infinitely many terms, only one of
them belongs to the same sequence.

3.2.1 Preceding terms of penultimate terms

The preceding terms of a penultimate term are those immediately before it, found in the
convergent R-Cz sequences leading to this penultimate term. Each of these preceding
terms belongs to a distinct convergent R-Cz sequence.
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Theorem 3.2. Let vnbp = 22n−1
3

be the penultimate term of the convergent R-Cz sequence
{vpl }l∈N , and let n = 3k + a, where k ∈ N, a ∈ {0, 1, 2} and n ≥ 2, therefore:

• if a = 0, vnbp ∈ 6N+ 3 (class B) and has no preceding terms;

• if a = 1, vnbp ∈ 6N + 1 (class A) and has an infinite number of distinct preceding

terms of the form 2α(22(3k+1)−1)−3
9

, where α ∈ 2N∗ and k ∈ N∗;

• if a = 2, vnbp ∈ 6N + 5 (class C) and has an infinite number of distinct preceding

terms of the form 2α(22(3k+2)−1)−3
9

, where α ∈ 2N+ 1 and k ∈ N.

Proof . For the penultimate term vnbp we have:

vnbp =
3vnbp−1 + 1

2α
⇐⇒ vnbp−1 =

2α(22n − 1)− 3

9
⇐⇒ 2α(22n − 1)− 3 ≡ 0 (mod 9)

In other words, the term vnbp−1 of the R-Cz sequence {vpl } precedes the penultimate term
if 2α(22n − 1) − 3 is odd and divisible by 9. As the reader will note, to determine the
preceding terms of a penultimate term, we will proceed by induction.

First case a = 0

For (k, α) = (1, 1), 21 (22×3 − 1)− 3 ≡ 6 (mod 9).
And suppose that for (k, α) = (1, α0), where α0 ∈ N∗ \ {1}:

2α0
(
22×3 − 1

)
− 3 ≡ 6 (mod 9)

We have for (k, α) = (1, α0 + 1):

2α0+1
(
22×3 − 1

)
− 3 ≡

(
2α0
(
22×3 − 1

)
− 3
)
+ 2

(
22×3 − 1

)
≡ 6 (mod 9)

Then, suppose that for (k, α) = (k0, α), where k0 ∈ N∗ \ {1} and α ∈ N∗:

2α
(
22×3k0 − 1

)
− 3 ≡ 6 (mod 9)

We have for (k, α) = (k0 + 1, α):

2α
(
22×3(k0+1) − 1

)
− 3 ≡

(
2α
(
22×3k0 − 1

)
− 3
)
+ 63 · 2α · 22×3k0 ≡ 6 (mod 9).

Therefore, if n ∈ 3N∗, the penultimate term vnbp has no preceding term. We demonstrate
in Appendix 6.2 that in this case vnbp ∈ 6N+ 3.

Second case a = 1

For (k, α) = (1, 1), 21
(
22×(3+1) − 1

)
− 3 ≡ 3 (mod 9).

And for (k, α) = (1, 2),22
(
22×(3+1) − 1

)
− 3 ≡ 0 (mod 9).
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Suppose that for (k, α) = (1, 2α0 + 1), where α0 ∈ N∗ \ {1}:

22α0+1
(
22×(3+1) − 1

)
− 3 ≡ 3 (mod 9)

We have for (k, α) = (1, 2(α0 + 1) + 1):

22(α0+1)+1
(
22×(3+1) − 1

)
− 3 ≡

(
22α0+1

(
22×(3+1) − 1

)
− 3
)
+ 765 · 22α0+1 ≡ 3 (mod 9).

And suppose that for (k, α) = (1, 2α0):

22α0
(
22×(3+1) − 1

)
− 3 ≡ 0 (mod 9)

We have for (k, α) = (1, 2(α0 + 1)):

22(α0+1)
(
22×(3+1) − 1

)
− 3 ≡

(
22α0

(
22×(3+1) − 1

)
− 3
)
+ 765 · 22α0 ≡ 0 (mod 9)

Then, suppose that for (k, α) = (k0, α), where k0 ∈ N∗ \ {1} and α ∈ 2N+ 1:

2α
(
22×(3k0+1) − 1

)
− 3 ≡ 3 (mod 9)

We have for (k, α) = (k0 + 1, α):

2α
(
22×(3(k0+1)+1) − 1

)
− 3 ≡

(
2α
(
22×(3k0+1) − 1

)
− 3
)
+ 63 · 2α+2(3k0+1) ≡ 3 (mod 9)

Finally, suppose that for (k, α) = (k0, α), where k0 ∈ N∗ \ {1} and α ∈ 2N∗:

2α
(
22×(3k0+1) − 1

)
− 3 ≡ 0 (mod 9)

We have for (k, α) = (k0 + 1, α):

2α
(
22×(3(k0+1)+1) − 1

)
− 3 ≡

(
2α
(
22×(3k0+1) − 1

)
− 3
)
+ 63 · 2α+2(3k0+1) ≡ 0 (mod 9)

Therefore, if n ∈ 3N∗ + 1, the penultimate term vnbp is preceded an infinite number of

distinct terms of the form
2α(22n−1)−3

9
, where α ∈ 2N∗. We demonstrate in Appendix 6.2

that in this case vnbp ∈ 6N+ 1.

Third case a = 2

For (k, α) = (0, 1), 21(22(0 + 2)− 1)− 3 ≡ 0 (mod 9).
And for (k, α) = (0, 2), 22(22(0 + 2)− 1)− 3 ≡ 3 (mod 9).
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Suppose that for (k, α) = (0, 2α0 + 1), where α0 ∈ N∗ \ {1}:

22α0+1(22(0 + 2)− 1)− 3 ≡ 0 (mod 9)

We have for (k, α) = (1, 2(α0 + 1) + 1):

22(α0+1)+1(22(0 + 2)− 1)− 3 ≡
(
22α0+1(22(0 + 2)− 1)− 3

)
+ 45 · 22α0+1 ≡ 0 (mod 9)

And suppose that for (k, α) = (0, 2α0):

22α0(22(0 + 2)− 1)− 3 ≡ 3 (mod 9)

We have for (k, α) = (0, 2(α0 + 1)):

22(α0+1)(22(0 + 2)− 1)− 3 ≡
(
22α0(22(0 + 2)− 1)− 3

)
+ 45 · 22α0 ≡ 3 (mod 9)

Then, suppose that for (k, α) = (k0, α), where k0 ∈ N∗ and α ∈ 2N+ 1:

2α(22(3k0 + 2)− 1)− 3 ≡ 0 (mod 9)

We have for (k, α) = (k0 + 1, α):

2α(22(3(k0+1)+2)−1)−3 ≡
(
2α(22(3k0 + 2)− 1)− 3

)
+63·2α ·22(3k0+2) ≡ 0 (mod 9)

Finally, suppose that for (k, α) = (k0, α), where k0 ∈ N∗ and α ∈ 2N∗:

2α(22(3k0 + 2)− 1)− 3 ≡ 3 (mod 9)

We have for (k, α) = (k0 + 1, α):

2α(22(3(k0+1)+2)−1)−3 ≡
(
2α(22(3k0 + 2)− 1)− 3

)
+63·2α ·22(3k0+2) ≡ 3 (mod 9)

Therefore, if n ∈ 3N + 2, the penultimate term vnbp is preceded by an infinite number of
distinct terms of the form 2α(22n−1)−3

9
, where α ∈ 2N + 1. We demonstrate in Appendix

6.2 that in this case vnbp ∈ 6N+ 5. □

To summarize, the penultimate terms fall into three classes, depending on the value of n
modulo 3. Only those in 6N + 1 or 6N + 5 have preceding terms, as shown in the figure
below.
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Root : {1}

Penultimate terms

Class A : 6N + 1 Class B : 6N + 3 Class C : 6N + 5

Infinity of preceding terms Infinity of preceding terms

Figure 1. The 3 classes of penultimate terms

3.2.2 Other preceding terms

The other preceding terms are those that immediately precede a term of an R-Cz sequence,
whether convergent or not. As in the case of the penultimate terms, each of these preceding
terms belongs to a distinct R-Cz sequence.

Theorem 3.3. Let {vpl }l∈N be an R-Cz sequence, convergent or not, and let vpi ∈ {vpl },
where i ∈ N and vpi ̸= 1, denoted as the parent term, then:

• if vpi ∈ 6N∗ + 1, it is preceded by an infinite number of distinct terms alternately in
6N+ 1, 6N+ 3 and 6N+ 5. These terms are of the form 2αi .vpi −1

3
, where αi ∈ 2N∗;

• if vpi ∈ 6N+ 3, it has no preceding terms;

• if vpi ∈ 6N + 5, it is preceded by an infinite number of distinct terms alternately in
6N+1, 6N+3 and 6N+5. These terms are of the form 2αi .vpi −1

3
, where αi ∈ 2N+1.

Proof . Let vpi ∈ {vpl }, where {vpl } is an R-Cz sequence, i ∈ N and vpi ̸= 1, we have:

vpi =
3vpi−1 + 1

2αi
⇐⇒ vpi−1 =

2αi vpi − 1

3
⇐⇒ 2αi vpi − 1 ≡ 0 (mod 3).

This implies that the previous terms of vpi are odd and divisible by 3, and one of them is
vpi−1. As before, we will proceed by induction.

First case vpi ∈ 6N∗ + 1

If vpi ∈ 6N∗ +1, then vpi ≥ 7 and there exists k ∈ N∗ such that vpi = 6k+1. In the sequel,
we make use of the congruence 6k + 1 ≡ 1 (mod 3).

For (k, αi) = (k, 1), 21(6×k+1)−1 ≡ 1 (mod 3) and for (k, αi) = (k, 2), 22(6×k+1)−1 ≡
0 (mod 3). Suppose that for (k, αi) = (k, 2α0 + 1), where α0 ∈ N∗ \ {1}:

22α0+1(6× k + 1)− 1 ≡ 1 (mod 3)
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We have for (k, αi) = (k, 2(α0 + 1) + 1):

22(α0+1)+1(6× k + 1)− 1 ≡ 22α0+1(6× k + 1)− 1 + 21 · 22α0+1 ≡ 1 (mod 3).

And suppose that for (k, αi) = (k, 2α0), where α0 ∈ N∗ \ {1}:

22α0(6× k + 1)− 1 ≡ 0 (mod 3)

We have for (k, αi) = (k, 2(α0 + 1)):

22(α0+1)(6× k + 1)− 1 ≡
(
22α0(6× k + 1)− 1

)
+ 21 · 22α0 ≡ 0 (mod 3)

Therefore, if vpi ∈ 6N + 1, it is preceded by an infinite number of distinct terms of the
form 2αi (6k+1)−1

3
, where αi ∈ 2N∗. We demonstrate in Appendix 6.3 that these preceding

terms are alternately in 6N+ 1, 6N+ 3 and 6N+ 5.

Second case vpi ∈ 6N+ 3

If vpi ∈ 6N+3, then vpi ≥ 3 and there exists k ∈ N∗ such that vpi = 6k+3. Since 6k+3 ≡ 0

(mod 3), we have:
2αi(6k + 3)− 1 ≡ 2 (mod 3)

Therefore, if vpi ∈ 6N+ 3, it has no preceding terms.

Third case vpi ∈ 6N+ 5

If vpi ∈ 6N + 5, then vpi ≥ 5 and there exists k ∈ N such that vpi = 6k + 5. In the sequel,
we make use of the congruence 6k + 5 ≡ −1 (mod 3).

For (k, αi) = (k, 1), 21(6×k+5)−1 ≡ 0 (mod 3), and (k, αi) = (k, 2), 22(6×k+5)−1 ≡ 1

(mod 3). Suppose that for (k, αi) = (k, 2α0 + 1), where α0 ∈ N∗ \ {1}:

22α0+1(6× k + 5)− 1 ≡ 0 (mod 3)

We have for (k, αi) = (k, 2(α0 + 1) + 1):

22(α0+1)+1(6× k + 5)− 1 ≡ (22α0+1(6× k + 5)− 1) + 15 · 22α0+1 ≡ 0 (mod 3)

And suppose that for (k, αi) = (k, 2α0), where α0 ∈ N∗ \ {1}:

22α0(6× k + 5)− 1 ≡ 1 (mod 3)
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We have for (k, αi) = (k, 2(α0 + 1)):

22(α0+1)(6× k + 5)− 1 ≡ (22α0(6× k + 5)− 1) + 15 · 22α0 ≡ 1 (mod 3)

Therefore, if vpi ∈ 6N+5, it is preceded by an infinite number of distinct terms of the form
2αi (6k+5)−1

3
, where αi ∈ 2N + 1. We demonstrate in Appendix 6.3 that these preceding

terms are alternately in 6N+ 1, 6N+ 3 and 6N+ 5. □

Clearly, Theorem 3.3 also applies to the penultimate terms, and due to its recursive
nature, it reveals an infinite tree structure, which is the subject of the following section.

3.3 Tree structure of the convergent R-Cz sequences

Thanks to what has been built and demonstrated so far, the convergent R-Cz sequences
can be represented in the form of a tree structure as follows:

• at level 0: the root set containing the element 1;

• at level 1: three infinite subsets of 2N + 1. The first contains the penultimate
terms in 6N+1 (class A), the second those in 6N+3 (class B), and the third those
in 6N + 5 (class C). Their union contains the penultimate terms of all convergent
R-Cz sequences;

• at level 2: each term of the class A or C is immediately preceded by an infinite
number of distinct terms alternately in 6N + 1, 6N + 3 and 6N + 5, which form
together the level 2. The terms in 6N+ 3 have no preceding terms;

• at level 3: each term of the previous level is immediately preceded by an infinite
number of distinct terms alternately in 6N + 1, 6N + 3 and 6N + 5, which form
together the level 3. As in levels 1 and 2, the terms in 6N + 3 have no preceding
terms;

• and so on ad infinitum.

From this description, a convergent R-Cz sequence is a path that starts from a node, or
a leaf when its first term is in 6N+ 3, and converges towards the root. The figure below
shows this tree structure.
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Figure 2. Tree structure of the convergent R-Cz sequences

Definition 3.1. Let Cz be the union of the subsets of 6N+1, 6N+3 and 6N+5 contained
in the first z levels of the tree structure (excluding level 0), defined as follows:

Cz =
z⋃

i=1

⋃
j∈Ii

Ci,j

Where z ∈ N∗, each Ci,j is a subset of 6N + 1, 6N + 3 or 6N + 5 that contains terms of
the sequences, and Ii is the set indexing the subsets of level i of the tree structure. And
let C be the complete union:

C =
⋃
i≥0

⋃
j∈Ii

Ci,j

Theorem 3.4. Let (i0, j0) ∈ N× Ii0 and (i1, j1) ∈ N× Ii1 such that (i0, j0) ̸= (i1, j1), then
C(i0,j0) ∩ C(i1,j1) = ∅.

Proof . Let (i0, j0) ∈ N × Ii0 and (i1, j1) ∈ N × Ii1 be two distinct pairs. First of all, if
Ci0,j0 and Ci1,j1 are not both subsets of 6N + 1, 6N + 3 or 6N + 5, their intersection is
clearly empty. Then, if there is a descending or ascending path in the tree structure from
Ci0,j0 to Ci1,j1 , which corresponds to a partial R-Cz sequence, since Theorems 2.1 to 2.3
state that an R-Cz sequence has no cycle (except the cycle of length 1 and value (1)), the
same term cannot appear in both Ci0,j0 and Ci1,j1 , hence, Ci0,j0 ∩ Ci1,j1 = ∅.

Otherwise, if there is no descending or ascending path from Ci0,j0 to Ci1,j1 , suppose there
exists vpl ∈ Ci0,j0 ∩ Ci1,j1 , where vpl is a term of a convergent R-Cz sequence. This would
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imply that either a parent term has vpl as its preceding term twice, which cannot occur
since the preceding terms of a parent term are distinct (see Theorems 3.2 and 3.3), or
that two distinct parent terms have vpl as their preceding term, which also cannot occur
since a term of an R-Cz sequence (in this case vpl ) can only be followed by a single term.
Therefore, in all cases, Ci0,j0 ∩ Ci1,j1 = ∅. □

Lemma 3.1. There are an infinite number of convergent R-Cz sequences.

Proof . By Theorem 3.2, there are an infinite number of penultimate terms forming the
level 1 of the tree structure, and each of them is preceded by an infinite number of distinct
terms forming level 2.

In turn, by Theorem 3.3, each term of level 2 is preceded by an infinite number of distinct
terms forming level 3, and so on.

Therefore, traversing the tree from the nodes, or the leaves (i.e., the terms in 6N + 3

because they do not have preceding terms), to the root, there are infinitely many paths
corresponding to as many convergent R-Cz sequences. □

Remark 3.1. Since terms in 6N+3 have no preceding terms in any R-Cz sequence, only
the first term of an R-Cz sequence, convergent or not, can be in 6N+ 3.

3.4 Sequences of preceding terms

A sequence of preceding terms contains all preceding terms generated by a parent term(i),
ordered in ascending order. In other words, it contains only the infinitely many children
of that parent term, and therefore all terms of the sequence belong to the same level
of the tree structure. In all that follows, this type of sequence will be referred to as a
Pt-sequence.

3.4.1 Main objects

Definition 3.2. Let {bi}i≥0 be the sequence of penultimate terms ordered in ascending
order, such that for all i ∈ N, bi = 22(i+2)−1

3
.

Thus b0 = 5, b1 = 21, b2 = 85, b3 = 341, b4 = 1365, etc.

Definition 3.3. Let {sj,i}i∈N be a Pt-sequence, according to Theorem 3.3, it is defined as
follows:

sj,i =

2
3
qj · 4i − 1

3
, if qj ∈ 6N+ 5

4
3
qj · 4i − 1

3
, if qj ∈ 6N+ 1

(i)Except for 1, which is the parent term of the penultimate terms.
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Where j ∈ N and qj is the parent term of the Pt-sequence.

Let {{sj,i}}(j,i)∈IPt×N be the family of the Pt-sequences sequences corresponding to all con-
vergent R-Cz sequences, ordered by their first term in ascending order, where IPt is the
set used for indexing the Pt-sequences with a single index.

Let S =
⋃

j∈IPt
{sj,i} be the union of terms of these Pt-sequences, then C = S∪{bi}∪{1}.

In view of the above, the set C contains the terms of all convergent R-Cz sequences,
consequently, according to Definition 1.2 and Theorem 1.1, C is in bijection with Rc

Cz.

Lemma 3.2. For all (j0, j1) ∈ IPt × IPt, with j0 ̸= j1, we have {sj0,i} ∩ {sj1,i} = ∅. In
other words, no Pt-sequence shares terms with another.

Proof . This lemma is a straightforward consequence of Theorems 3.3 and 3.4. Indeed,
let (j0, j1) ∈ IPt × IPt, with j0 ̸= j1, and let qj0 (respectively, qj1) be the parent term of
the Pt-sequence {sj0,i} (respectively, {sj1,i}).

It follows from Definition 3.3 that {sj0,i}∩ {sj1,i} ≠ ∅, if there exists αj0 ∈ 2N∗ or 2N+1,
depending on whether qj0 ∈ 6N∗ + 1 or 6N + 5, and if there exists αj1 ∈ 2N∗ or 2N + 1,
depending on whether qj1 ∈ 6N∗ + 1 or 6N+ 5, such that:

2αj0qj0 − 1

3
=

2αj1qj1 − 1

3
⇐⇒ 2αj0qj0 = 2αj1qj1

Without loss of generality, we can assume αj0 > αj1 , then 2αj0
−αj1qj0 = qj1 . However,

this leads to a contradiction since the left-hand side is even, while qj1 is odd. The same
contradiction arises if we assume αj0 < αj1 .

Finally, if αj0 = αj1 , then {sj0,i} = {sj1,i} and therefore j0 = j1, contradicting our
hypothesis. Hence, if j0 ̸= j1, then {sj0,i} ∩ {sj1,i} = ∅. □

Lemma 3.3. The sets IPt and C are countable.

Proof . According to Lemma 3.2, for all (j0, j1) ∈ IPt×IPt, with j0 ̸= j1, {sj0,i}∩{sj1,i} =

∅, therefore,
⋃

j∈IPt
{sj,i} is a partition of S. And considering S ⊂ 2N+1, IPt is countable.

Then, given that C = S ∪ {bi} ∪ {1}, as a union of countable sets, C is countable. □

3.4.2 Shifts

Lemma 3.4. Let qj be a term in the tree structure at level k ≥ 1 (the parent term), and
let {sj,i}i≥0 be the Pt-sequence it generates, shifted either to the left or to the right. Then,
for the terms of the Pt-sequence we have:

sj,i+1 − sj,i =

22i+1.qj if qj ∈ 6N+ 5

22(i+1).qj if qj ∈ 6N+ 1
(3.1)
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lim
i→∞

sj,i+1

sj,i
= 4 and 4 <

sj,i+1

sj,i
≤ 13

3
(3.2)

For the shift factor:

βqj =
sj,0
qj

=


2− 1

qj

3
< 2

3
if qj ∈ 6N+ 5 (sj,0 < qj : left shift)

4− 1
qj

3
< 4

3
if qj ∈ 6N+ 1 (sj,0 > qj : right shift)

(3.3)

And for the first term of the Pt-sequence:

sj,0 = βqj .qj (3.4)

Proof . For (3.1), if qj ∈ 6N + 5 (respectively, qj ∈ 6N + 1), Theorem 3.3 states that
the term number i of {sj,i} is equal to sj,i =

22i+1 qj−1

3
(respectively, sj,i =

22(i+1) qj−1

3
),

therefore:

sj,i+1 − sj,i =


22(i+1)+1 qj−1

3
− 22i+1 qj−1

3
= 22i+1 qj if qj ∈ 6N+ 5

22(i+2) qj−1

3
− 22(i+1) qj−1

3
= 22(i+1) qj if qj ∈ 6N+ 1

Concerning (3.2), if qj ∈ 6N+ 1:

lim
i→+∞

sj,i+1

sj,i
=

22(i+2) qj − 1

22(i+1) qj − 1
= 4 (3.5)

For (qj, i) = (7, 0), 4 <
sj,i+1

sj,i
= 16×7−1

4×7−1
= 111

27
= 13

3
, then, because of (3.5), for all

(qj, i) ∈ (6N + 1) × N, it follows that 4 <
sj,i+1

sj,i
= 22(i+1)+1×7−1

22(i+1)×7−1
≤ 13

3
. We get the same

result for qj ∈ 6N+ 5.

Concerning (3.3), Theorem 3.3 states that sj,0
qj

=
2− 1

qj

3
< 2

3
, when qj ∈ 6N + 5, or that

sj,0
qj

=
4− 1

qj

3
< 4

3
, when qj ∈ 6N+ 1. And finally, (3.4) is clearly a result of (3.3). □

Definition 3.4. Let β(a)k be the average shift factor of the first k + 1 Pt-sequences, by
which a Pt-sequence {sj,i}, where j ∈ IPt and 0 ≤ j ≤ k, is shifted from its parent term
qj, defined as follows:

β(a)k =

( ∏
j∈IPt, 0≤j≤k

βqj

) 1
k+1

Where βqj =


2− 1

qj

3
if qj ∈ 6N+ 5

4− 1
qj

3
if qj ∈ 6N+ 1

.
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Lemma 3.5. If for all K ∈ N, there exists k ≥ K such that β(a)k > 1, then the number of
right-shifted Pt-sequences, among the first k+1, exceeds γ times the number of left-shifted
ones, where γ =

ln( 3
2
)

ln( 4
3
)
.

Proof . Suppose that for all K ∈ N, there exists k ≥ K such that β(a)k > 1. Definition
3.4 states that for k sufficiently large: ∏

j∈IPt
0≤j≤k

βqj


1

k+1

≈

((
2

3

)l(
4

3

)r
) 1

k+1

Where (l, r) ∈ N∗ × N∗ and l + r = k + 1, hence:

((
2

3

)l(
4

3

)r
) 1

k+1

> 1 ⇐⇒
(
2

3

)l(
4

3

)r

> 1 ⇐⇒
(
2

3

)(
4

3

) r
l

> 1

Finally, this yields r > ln( 3
2
)

ln( 4
3
)
l ≈ 1.4094 l, and we conclude that the first k+1 Pt-sequences

are shifted to the right strictly more than γ =
ln( 3

2
)

ln( 4
3
)

times as much as to the left. □

Lemma 3.6. If for all K ∈ N, there exists k ≥ K such that β(a)k > 1, then the sequence
{qj}j∈N, ordered in ascending order and where qj is the parent term of the Pt-sequence
{sj,i}, grows on average exponentially.

Proof . Suppose that for all K ∈ N, there exists k ≥ K such that β(a)k > 1. Let qj be
the parent term of the Pt-sequence {sj,i}.

Since all Pt-sequences belonging to the tree of convergent R-Cz sequences originate from
penultimate terms, there exists a path in the tree structure from bij to qj, such that:

bij → qj1 → qj2 → · · · → qj = qjNj−1

Where bij is the ancestor penultimate term of qj, and Nj is the number of levels between
bij and qj (excluding the level of bij and including the level of qj), so that qj is located at
level Nj + 1 in the tree structure.

According to Lemma 3.4, we then have:

qj =

δj + 4aj βbij bij if Nj = 1

δj + 4aj βbij bij
∏Nj−1

n=1 βqjn if Nj > 1

Where:
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• βbij is the shift factor associated with the penultimate term bij ;

• βqjn is the shift factor associated with the parent term qjn ;

• aj =
Nj∑
n=1

pos(qjn), where pos(qjn) is the index(i) of qjn in its Pt-sequence;

• δj ∈ Q+ depends on aj.

Taking into account the average shift factor β(a)k, we have:

qj ≈

δj + 4aj
(
β(a)k

)
bij if Nj = 1

δj + 4aj
(
β(a)k

)Nj bij if Nj > 1

(
β(a)k

)Nj is the average shift factor relative to the penultimate term bij , and δj + 4aj

indicates the horizontal position of qj at level Nj+1 in the tree structure.

Given that both
(
β(a)k

)Nj and 4aj grow exponentially with Nj and aj, it follows that the
sequence {qj} grows on average exponentially. □

3.4.3 Central result

Building on what has been defined and demonstrated so far, we now introduce a central
result that establishes a relationship between the distribution of the Pt-sequences in 2N+1

and the average shift factor.

Let D be the complement set of C in 2N+ 1.

Definition 3.5. Let RD
i = [ai, bi] be an interval of consecutive odd numbers in D, which

corresponds to an empty space in C such that RD
i ∩ C = ∅, and let RD = {RD

i }i∈Es be
their set, where Es is the set indexing all empty spaces of C.

Theorem 3.5. If the set C is countable, then there exists K ∈ N such that for all k ≥ K,
β(a)k ≤ 1.

Proof . We will proceed by contradiction.

Hypothesis
Suppose that C is countable and assume by contradiction that for all K ∈ N, there exists
k ≥ K such that β(a)k > 1.

As this applies to all K, let {(ki, Ki)}i∈N be a family of distinct pairs such that ki ≥ Ki

and β(a)ki > 1, and let β(m)I = min
(
{β(a)ki}0≤i≤I

)
be the minimum average shift factor

on the interval [0, kI ], where I ∈ N.

(i)Starting from 0.
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Pt-sequences shift
For the sake of the proof, we suppose that for all (j0, j1) ∈ IPt×IPt, with j0 ̸= j1, we have
{sj0,i} ∩ {sj1,i} = ∅, otherwise it would contradict the fact that no Pt-sequence shares
terms with another, as stated in Lemma 3.2.

Then, given that for all I ∈ N, β(m)I > 1, the Pt-sequences are shifted to the right strictly
more than γ times as much as to the left, as established by Lemma 3.5.

Thus, when β(m)I is close to 1, approximately 58.5% of the Pt-sequences are shifted to
the right by a factor ≈ 4

3
, and this percentage increases as β(m)I increases.

Empty spaces creation
According to Theorem 3.3, the creation of the Pt-sequences follows a tree-like pattern, as
does the creation of the empty spaces resulting from these sequences.

Let Tes denote the tree of the empty spaces, we then have:

• at level 1, there are infinitely many empty spaces located between the penultimate
terms, their size is unbounded as the penultimate terms progress exponentially (see
Definition 3.2);

• at level 2, penultimate terms in 6N + 1 or 6N + 5 generate an infinite number of
Pt-sequences, whose terms divide each empty spaces of level 1, into which they are
inserted, giving rise to an infinite number of new empty spaces;

• at level 3, in turn terms of level 2 in 6N+1 or 6N+5 generate an infinite number of
Pt-sequences, whose terms subdivide each empty spaces of level 2, into which they
are inserted, giving rise once again to an infinite number of new empty spaces;

• and so on.

Owing to the hypothesis, the generated Pt-sequences are not only shifted predominantly
to the right but do so exponentially.

Indeed, since for all I ∈ N, β(m)I > 1, Lemma 3.6 states that at level z the Pt-sequences
are on average shifted to the right by a factor of at least (β(m)I)z−1. To put it another
way, the Pt-sequences become increasingly distant from one another.

Therefore, the gaps between successive terms, together with β(a)k > 1, ensure that the
spacing within and between sequences is sufficient to contain the Pt-sequences generated
successively.

It follows that the creation of infinitely many new empty spaces at successive levels of the
tree structure must necessarily continue endlessly (see Appendix 6.5).

As shown in the figure below, the creation process of empty spaces can be represented
graphically by an infinite tree growing diagonally to the right.
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Figure 3. Tree structure of empty spaces

Uncountability
Insofar as it generates infinitely many levels, this creation process causes the tree to
expand endlessly, producing an infinite number of unending paths, and thereby making
the complete indexation of all empty spaces impossible.

Indeed, first it should be noted that although some branches terminate at certain levels,
due to the predominantly rightward shift of the Pt-sequences, which causes some empty
spaces to stop dividing, there remain infinitely many empty spaces at each level. Conse-
quently, endless paths can still be constructed by passing through different empty spaces
at the same level.

Then, let pi = (pin0,a0
, . . . , pinz ,az , . . . ) ∈ NN be an endless path of Tes, where i ∈ N is the

number of the path and pinz ,az the index of an empty space at level nz.

We have (n0, a0) = (1, 0) and for all j ∈ N, (nj+1, aj+1) = (nj + 1, 0), except when a
branch terminates at level nj. In that case (nj+1, aj+1) = (nj, 1), p

i
nj+1,aj+1

is the index of
the next empty space at level nj that will be subdivided at the level nj +1, and we define
(nj+2, aj+2) = (nj + 1, 0).

Finally, suppose there exists a bijective function f : N → P defined as follows:

f(i) = (pin0,a0
, . . . , pinz ,az , . . . )
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Where P = {pi}i∈N is supposed to be the set of all endless paths of the tree structure,
and supposed to be countable as it is in bijection with N.

Since there are infinitely many empty spaces at every level of Tes (except at level 0),
there exist indexes pxn0,a0

̸= pin0,a0
, . . ., pxnz ,az ̸= pinz ,az , . . . , which form a new endless path

px = (pxn0,a0
, . . . , pxnz ,az , . . . ).

Although this path is valid, it does not belong to P , as it differs from every path pi ∈ P

in at least one position, contradicting the assumption that P contains all endless paths
of the tree structure, and thereby demonstrating that their set is uncountable.

Conclusion
As RD is defined as containing the intervals in D corresponding to all empty spaces in
C, and given that C is countable, it follows that the empty spaces of C are themselves
countable.

However, it is impossible for the empty spaces to be countable in RD while generating an
uncountable number of distinct configurations in Tes. This contradiction invalidates the
assumption that for all K ∈ N, there exists k ≥ K such that β(a)k > 1. Therefore, the
countability of C implies the existence of some K ∈ N such that for all k ≥ K, β(a)k ≤ 1.
This completes the proof. □

Remark 3.2. In contrast to the paths of the tree of empty spaces, those of the tree of
convergent R-Cz sequences, which correspond to a backward traversal of these sequences,
are not endless. They all eventually terminate in a term belonging to 6N + 3 (which has
no preceding terms), however this will not be demonstrated here, as it is not necessary.

3.4.4 Distances

Definition 3.6. Let {sj0,i0} and {sj1,i1} be two Pt-sequences such that sj0,0 < sj1,0. Their
distance is defined as the distance between their first term, as follows:

d ({sj0,i0}, {sj1,i1}) = sj1,0 − sj1,0 − oj0,j1

Where oj0,j1 denotes twice the number of terms between sj0,0 and sj1,0, that belong to other
Pt-sequences, excluding the first term of these latter. The average distance between two
consecutive Pt-sequences, among the first k + 1 ordered in ascending order, is thereby:

d(a)k = d ({sj,i}0≤j≤k) =
1

k

((
k−1∑
j=0

sj+1,0 − sj,0

)
− o0,k

)
=

sk,0 − s0,0 − o0,k
k

Remark 3.3. Insofar as the objective is to determine whether the Pt-sequences move
away from each other depending on the value of β(a)k, this distance only accounts for the
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possible empty spaces separating the first terms of the Pt sequences.

Lemma 3.7. If for all K ∈ N and for all r > 1, there exist k0, k1 ∈ IPt, with k0 ≥ K and
k0 < k1, such that d(a)k1

d(a)k0
> r, then for all K, there exists k ≥ K such that β(a)k > 1.

Proof . By contraposition, suppose there exists K ∈ N such that for all k ≥ K, β(a)k ≤ 1.
Let k0 and k1 ∈ IPt, with k0 ≥ K and k0 < k1, then:

d(a)k1

d(a)k0
=

k0
k1

+
sk1,0 − sk0,0 − ok0,k1

k1d(a)k0

Since the distance between two consecutive Pt-sequences is at least 2(i), and given that
k0 ≥ K and k1 ≥ K, implying that β(a)k0 ≤ 1 and β(a)k1 ≤ 1, it follows that there exists
c ≥ 2 (independently of k0 and/or k1), such that sk1,0 − sk0,0 − ok0,k1 ≤ c(k1 − k0) (see
Appendix 6.4). Hence:

d(a)k1

d(a)k0
≤ k0

k1
+

c

d(a)k0

(
1− k0

k1

)
Given that k0 < k1 and d(a)k0 ≥ 2, we have:

d(a)k1

d(a)k0
< 1 +

c

2
⇐⇒ d(a)k1

d(a)k0
≤ 1 +

c

2
− ε

We therefore conclude that there exist K ∈ N and (r = 1 + c
2
− ε) > 1, with ε ∈]0, 1[,

such that for all k0 and k1 ∈ IPt, with k0 ≥ K and k0 < k1, we have d(a)k1

d(a)k0
≤ r. □

3.5 Natural density of C

In this section, we will study the natural density of C relative to 2N+1 (see [1]). To this
end, we will prove that the size of the eventual empty spaces is bounded.

Theorem 3.6. If there exists K ∈ N such that for all k ≥ K, β(a)k ≤ 1, then there exists
L ∈ N∗ such that for all i ∈ N, card(RD

i ) ≤ L.

Proof . By contraposition, suppose that for all L ∈ N∗, there exists i ∈ N such that
card(RD

i ) > L.

This implies that among the empty spaces of C (i.e.,the intervals of D), infinitely many
of them grow without bound, and consequently there exist i0 < i1 < · · · < in < · · · such
that:

card(RD
i0
) < card(RD

i1
) < · · · < card(RD

in) < · · ·

Since these empty spaces have the effect of pushing the Pt-sequences further and further
apart, it follows that the average distance between two consecutive Pt-sequences increases.

(i)Because C ⊂ 2N+ 1.
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Then, for all K ∈ N and for all r > 1, there exist k0 and k1 ∈ IPt, with k0 ≥ K and
k0 < k1, such that d(a)k1

d(a)k0
> r.

Therefore, by Lemma 3.7, for all K there exists k ≥ K such that β(a)k > 1, which
demonstrates the theorem. □

Definition 3.7. Let d(odd) : P(2N + 1) → [0, 1] be the natural density relative to the set
2N+ 1, defined for all A ∈ P(2N+ 1) as follows:

d(odd)(A) = lim
n→+∞

N(odd),n(A)

N(odd),n(2N+ 1)

Where N(odd),n(A) = card(A∩{1, 3, . . . , 2n+1}) is the number of odd numbers in A, and
N(odd),n(2N + 1) = card({1, 3, . . . , 2n + 1}) = n) in 2N + 1, both restricted to numbers
between 1 and 2n+ 1.

Theorem 3.7. If there exists K ∈ N such that for all k ≥ K, β(a)k ≤ 1, then d(odd)(C) > 0.

Proof . Once we have established, thanks to Theorem 3.5, that the countability of C

implies there exists K ∈ N such that for all k ≥ K, β(a)k ≤ 1, it follows that the Pt-
sequences are close to one another, in the sense that the size of any eventual gaps between
any group of them is bounded. This is precisely what Theorem 3.6 asserts.

If we were to suppose the opposite, it would mean that as we move through the Pt-
sequences, the average distance between them becomes larger and larger, which, by The-
orem 3.6, would imply that for all K ∈ N, there exists k ≥ K such that β(a)k > 1, and in
turn, by Theorem 3.5, would imply that the empty spaces are not countable.

Therefore, since Theorem 3.6 states that there exists L ∈ N∗ such that the size of any
empty space of C is at most L, it follows that in every interval of L+ 1 consecutive odd
numbers, there is at least one element of C. Then, we have:

d(odd)(C) = lim
n→+∞

(
N(odd),n(C)

N(odd),n(2N+ 1)

)
= lim

n→+∞

(
n

(L+1)

n

)
=

1

L+ 1
> 0

This completes the proof. □

4 All R-Cz sequences converge to 1

Terence Tao proved in 2021 that divergent Collatz sequences are statistically negligible
(see [7]). Considering the theorems proven so far, we have all necessary elements to
demonstrate that all R-Cz sequences converge to 1.
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4.1 Preliminaries

According to Definition 1.2, Rd
Cz

contains all R-Cz sequences that do not converge, and
as the complement of C in 2N+1, D contains all terms of these sequences. Therefore, as
a corollary of Theorem 1.1, D is in bijection with Rd

Cz
.

Since the empty spaces of C are the RD
i intervals of D (see Definition 3.5), D is defined

as follows:
D =

⋃
i∈Es

RD
i

We know from Theorem 3.6 that there exists L ∈ N∗ such that the size of any empty
space of C is at most L. Therefore, the size of any RD

i interval is at most L as well.

Lemma 4.1. (I) Let {dpl }l∈N be a divergent R-Cz sequence. Then, there exists a sequence
of indices i0, i1, . . . , ik, . . ., such that:

dpi0 < dpi1 < · · · < dpik < · · ·

We denote by {dpik}k∈N this subsequence of {dpl }. (II) Only terms in 4N+ 3 can cause the
sequence {dpl } to increase.

Proof . Concerning (I), since the sequence {dpl } diverges to infinity, an infinite number
of its terms become larger and larger.

Therefore, there exists a sequence of indices i0, i1, . . . , ik, . . ., such that:

dpi0 < dpi1 < · · · < dpik < · · ·

Concerning (II), let dpi be a term of {dpl }. Since dpi is an odd number, it must be of the
form 4n+ 1 or 4n+ 3, where n ∈ N. If dpi = 4n+ 1:

dpi+1 =
3dpi + 1

2α
=

3(4n+ 1) + 1

2α
=

12n+ 4

2α
=

6n+ 2

2α−1
=

3n+ 1

2α−2

Hence, α ≥ 2 and dpi+1 < dpi . Otherwise, if dpi = 4n+ 3:

dpi+1 =
3dpi + 1

2α
=

3(4n+ 3) + 1

2α
=

12n+ 10

2α
=

6n+ 5

2α−1

Noting that 6n is even and 5 is odd, α = 1 and then (dpi+1 = 6n+5) > (dpi = 4n+3). □

Theorem 4.1. If D is supposed to be non-empty, then all R-Cz sequences of Rd
Cz diverge

to infinity.
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Proof . Suppose D is non-empty. Then, Rd
Cz contains at least one R-Cz sequence that

does not converge.

On the one hand, Theorems 2.1 to 2.3 state that no R-Cz sequence has a cycle other
than the trivial cycle of length 1 and value (1), implying in view of Definition 1.1 that
all its terms are distinct (except when the sequence reaches 1). On the other hand, D is
discrete.

It follows that if an R-Cz sequence does not converge to 1, then it must diverge to infinity.
Therefore, all R-Cz sequences of Rd

Cz diverge to infinity. □

4.2 Case 1: D is a finite union of intervals

Although we have not proved that D is composed of a finite number of RD
i intervals, we

will address this case without recourse to theorems or lemmas.

Suppose there exists a divergent R-Cz sequence {dpl }, from which we extract its subse-
quence {dpik}. Since {dpik} diverges to infinity, as stated in Lemma 4.1, we have:

dpi0 < dpi1 < · · · < dpik < · · ·

However, since the RD
i intervals are finite in number, there exists k > 0 such that for all

i ≥ 0, we have dpik /∈ RD
i . Therefore, there cannot not exist any divergent R-Cz sequence,

and D is empty.

4.3 Case 2: D is an infinite union of intervals

Definition 4.1. Let {vpl }l∈N be an R-Cz sequence and vpi be one of its terms. Then, T vpi

is the tree structure associated with the term vpi , which contains all its predecing terms at
all levels of descent (all its descendants), vpi being the root of the tree. That is, all terms
that precede vpi within R-Cz sequences, arranged in a tree structure (see Section 3.3).

Remark 4.1. If the first term vp0 of an R-Cz sequence is in 6N+ 3, then, since terms in
6N+ 3 have no preceding terms, T vp0 = vp0.

Theorem 4.2. Let vpi be a term of the R-Cz sequence {vpl } and vp
′

i′ be a term of the R-Cz
sequence {vp

′

l′ }, the two sequences may be the same but vpi ̸= vp
′

i′ .

Then, both T vpi and T vp
′

i′ contain an infinite number of terms, and if there is no ascending
or descending path from vpi to vp

′

i′ , we have T vpi ∩ T vp
′

i′ = ∅.

Otherwise, if there is an ascending path from vpi to vp
′

i′ (respectively, from vp
′

i′ to vpi ), then

T vpi ⊊ T vp
′

i′ (respectively, T vp
′

i′ ⊊ T vpi ), and the set T vp
′

i′ \ T vpi (respectively, T vpi \ T vp
′

i′ )
contains infinitely many terms of R-Cz sequences.
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Proof . First, according to Theorem 3.3, both T vpi and T vp
′

i′ are infinite sets, and if there
is no ascending or descending path from vpi to vp

′

i′ (i.e., no R-Cz sequence connecting one

term to the other), then Theorem 3.4 states that T vpi ∩ T vp
′

i′ = ∅.

Otherwise, if there is an ascending path from vpi to vp
′

i′ (respectively, from vp
′

i′ to vpi ), then,
considering vpi as a descendant of vp

′

i′ (respectively, vp
′

i′ as a descendant of vpi ), we have

T vpi ⊊ T vp
′

i′ (respectively, T vp
′

i′ ⊊ T vpi ).

It also follows, since Theorem 3.3 states that vp
′

i′ (respectively, vpi ) is the parent term of

infinitely many preceding terms, that T vp
′

i′ \T vpi (respectively, T vpi \T vp
′

i′ ) contains infinitely
many terms of R-Cz sequences. □

Proposition 4.1. If D is supposed to be non-empty, then Rd
Cz contains infinitely many

divergent R-Cz sequences, arranged in a tree structure whose root lies at infinity(i).

Proof . Suppose D is non-empty. Then, by Theorem 4.1 Rd
Cz contains at least one diver-

gent R-Cz sequence.

Let {dpl } be this sequence and let dpk be one of its terms (with k ≥ 0 to avoid dpk belonging
to 6N+ 3), and let T dpk be the its associated tree (see Definition 4.1).

As stated by Theorem 3.3, dpk has infinitely many distinct preceding terms that constitute
level 1 of T dpk , in turn each term of level 1 has infinitely many distinct preceding terms
that constitute level 2 of T dpk , and so on (dpk being the root).

Given that each such term lies in a distinct R-Cz sequence and that these sequences merge
at the term dpk, it follows that they must be divergent as well.

By the same argument, the term dpk+1 is associated with the tree T dpk+1 , and like dpk it has
infinitely many distinct preceding terms that constitute level 1 of T dpk+1 (among which
is dpk), etc. And as with dpk, all these terms belong to infinitely many divergent R-Cz
sequences.

The same holds for the subsequent terms of {dpl }. Therefore, we have (with n > 1):

T dpk ⊊ T dpk+1 ⊊ · · · ⊊ T dpk+n ⊊ · · ·

As the sequence {dpl } diverges to infinity, this endless chain of strict inclusions yields
infinitely many divergent R-Cz sequences, arranged in a tree structure growing upward
without bound, whose root must therefore lie at infinity. □

Thus, the divergent R-Cz sequences correspond to the paths of a tree structure that start
from a node, or a leaf when their first term is in 6N+ 3, and ascend endlessly toward the

(i)We speak of the “root at infinity” as a metaphor, meaning simply that one can climb indefinitely up
the tree structure toward the root, without ever reaching it.
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root. The figure below illustrates this tree structure.

. . .

6N + 1 terms
in infinite number

6N + 3 terms
in infinite number

6N + 5 terms
in infinite number

6N + 1 terms
in infinite number

6N + 3 terms
in infinite number

6N + 5 terms
in infinite number

6N + 1 terms
in infinite number

6N + 3 terms
in infinite number

6N + 5 terms
in infinite number

. . .

Figure 4. Tree structure of the divergent R-Cz sequences

Proposition 4.2. The set Rd
Cz cannot contain infinitely many divergent R-Cz sequences,

arranged in a tree structure whose root lies at infinity.

First proof (set-theoretic). We will proceed by direct proof.

Hypothesis
Let {dpxl } be a divergent R-Cz sequence and let dpx−1 be its first term, then according to
Proposition 4.1:

T d =
+∞⋃
l=−1

T dpxl

is the union of the associated trees with all terms of {dpxl }, such that:

T dpx−1 ⊊ T dpx0 ⊊ · · · ⊊ T dpxk ⊊ · · ·

Uncountability
The tree T d is an infinitely branching tree whose root lies at infinity. As in the case of the
tree of the empty spaces in the proof of Theorem 3.5, the paths of T d, which correspond
to distinct divergent R-Cz sequences, are endless, but here, they never end when traced
back toward the root.
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Indeed, let pn be such a path starting from a node n. Since the tree extends infinitely in
both directions, from the root to the nodes and from the nodes to the root, level counting
starts at 0 at the starting node and increases as one moves toward the root. Thus, pn is
of the form (pn0 , . . . , p

n
z , . . . ) ∈ NN, where pni is the local index of the i-th node (at level i)

along the path, with i ∈ N. However, a complete enumeration of all paths is impossible,
as demonstrated below.

It must first be noted that Theorems 3.3 and 3.4, and Lemma 3.2 apply to all R-Cz
sequences, including the divergent ones. Then, let f : P → NN be a function defined as
follows:

f(pi) = (pi0, . . . , p
i
z, . . . )

where P = {pi = (pi0, . . . , p
i
z, . . . )}i∈N is the set of the paths from all nodes of Tdiv to the

root. Let (pi, pj) ∈ P 2, with pi ̸= pj, then there exists k such that pik ̸= pjk, and we have:

f(pi) = (pi0, . . . , p
i
k, . . . ) ̸= (pj0, . . . , p

j
k, . . . ) = f(pj)

Hence, f is injective. Regarding surjectivity, let (n0, . . . , nk, . . . ) ∈ NN.

Because the root of T d lies at infinity, and due to the recursive nature of Theorem 3.3,
which states that each parent term in 6N+1 or 6N+5 generates infinitely many children
terms(i), which in turn generate infinitely many others, and so on ad infinitum, as a result
there are infinitely many terms (i.e., nodes) at each level of the tree, all distinct as stated
in Lemma 3.2.

Consequently, we can construct for all k ∈ N, a reverse path (. . . , pyk, . . . , p
y
0), from the

root to the node y, where for all j > 0, the node pyj is the parent of the node pyj−1, such
that reversing it yields the path py = (py0, . . . , p

y
k, . . . ), and such that:

f(py) = (py0, . . . , p
y
k, . . . ) = (n0, . . . , nk, . . . )

Hence, f is bijective. Since NN is uncountable and f is a bijection from P to NN, it
follows that P is also uncountable, and the complete enumeration of all paths is therefore
impossible.

Conclusion
Since Theorem 1.1 states that Rd

Cz is in bijection with the countable set D, it follows that
Rd

Cz is also countable. However, insofar as each path in T d corresponds to a divergent
R-Cz sequence, the uncountability of these paths highlights a contradiction, as an infi-
nite number of paths, composed of infinite sequences of nodes, cannot be reduced to a
countable set of finite indexes, and thus cannot be contained in a countable set.

(i)We recall that they lie alternately in 6N+ 1, 6N+ 3 and 6N+ 5.
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This leads us to conclude that Rd
Cz cannot contain infinitely many divergent R-Cz se-

quences, arranged in a tree structure whose root lies at infinity. □

Second proof (combinatorial). As Theorem 3.6 states that the size of the RD
i intervals

are bounded, there exists L ∈ N∗ such that for all i ≥ 0, RD
i ≤ L.

It follows that there exists nd ≤ L, such that at least nd divergent R-Cz sequences can lie
within the RD

i intervals. Now, since the root lies at infinity and there are infinitely many
distinct nodes at each level of the tree, there exists a subfamily Rdd

Cz = {{dpjl }j∈N ⊂ Rd
Cz

such that for all X ∈ N and for all (j0, j1) ∈ N2:{
d
pj0
l0

}
0≤l0≤X

∩
{
d
pj1
l1

}
0≤l1≤X

= ∅.

In other words, there exist infinitely many pairwise disjoint divergent R-Cz sequences.
We will refer to these sequences as DR-Cz sequences. Then, let:

Ik =
k⋃

n=0

{
RD

i ∈ RD : ∃j ≥ 0 such that dpjn ∈ RD
i

}
be the set of RD

i intervals which contain the k first terms of all DR-Cz sequences, ordered
in ascending order.

For k = 0, since the size of the RD
i intervals is bounded, I0 contains infinitely many of

these intervals, and some other RD
i intervals can lie between the intervals of I0.

For k ≥ 1, since the term d
pj
k of the sequence {dpjk } is at a determined distance from the

term d
pj
k−1

(i), it must lie either in the same interval as the term d
pj
k−1, or in one of the

intervals that precedes or follows it.

Insofar as it applies for all j, the terms d
pj
k of the DR-Cz sequences can lie in infinitely

many new RD
i intervals, and we have the following chain of inclusion:

I0 ⊆ I1 ⊆ · · · ⊆ Ik−1 ⊆ Ik

Finally, considering (i) that the length of the RD
i intervals is at most L, and (ii) that there

is at most a finite number of RD
i intervals between each interval of I0, there exists a rank

K ≥ 1 in the DR-Cz sequences, from which all RD
i intervals will completely be filled by

terms of the DR-Cz sequences, and we will have:

IK = IK+1 = IK+2 = · · ·

(i)if dpj

k−1 < d
pj

k then d
pj

k =
3d

pj
k−1+1

2 .
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Therefore, we conclude that Rd
Cz cannot contain infinitely many divergent R-Cz sequences,

arranged in a tree structure whose root lies at infinity(i). □

Remark 4.2. The reader will note that a single divergent R-Cz sequence is sufficient
to generate a tree structure, giving rise to an uncountable number of divergent R–Cz
sequences.

Theorem 4.3. If D is supposed to be non-empty, the contradiction that arises between
Propositions 4.1 and 4.2, leads to the conclusion that D must be empty. Consequently, all
R-Cz sequences converge to 1.

Proof . Suppose D is non-empty. Then Proposition 4.1 states that Rd
Cz

contains infinitely
many divergent R-Cz sequences, whereas Proposition 4.2 states that Rd

Cz
cannot contain

such a number of divergent R-Cz sequences. These two propositions cannot be true
simultaneously.

The only way to resolve this contradiction is to conclude that D must be empty. Indeed,
if D is empty, there is no longer any possibility of an infinite number of divergent R-
Cz sequences arranged in a tree structure, and there is no longer a contradiction between
Propositions 4.1 and 4.2; both propositions are true. There is no other possible resolution.

As D is empty, it follows that C = 2N + 1, which allows us to conclude that all R-Cz
sequences converge to 1. □

Remark 4.3. The proof of Theorem 3.5 and the set-theoretic proof of Proposition 4.2
together constitute a two-fold cardinality argument, indeed:

• The proof of Theorem 3.5 demonstrates that even purely convergent R-Cz sequences,
if spaced, give rise to an uncountable tree of empty spaces;

• The set-theoretic proof of Proposition 4.2 demonstrates that any hypothetical diver-
gent R-Cz sequence would likewise generate an uncountable tree of divergent R-Cz
sequences.

In either scenario, spacing or divergence, the same cardinality contradiction arises, rein-
forcing the consistency of the overall approach.

It is also worth noting that even in the absence of Theorem 3.5, and thus
without considering the structure of D, the set-theoretic proof of Proposition
4.2 alone suffices to establish the convergence of all R-Cz sequences.

(i)Combinatorially speaking, we could say that ℵ0 × ℵ0 ≫ ℵ0 × L.
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Ultimately, beyond the R-Cz sequences, this paper reveals a hierarchical relationship be-
tween all odd numbers through the recursive formula which characterizes the Pt-sequences:

sj,i =

2
3
qj · 4i − 1

3
, if qj ∈ 6N+ 5

4
3
qj · 4i − 1

3
, if qj ∈ 6N+ 1

Where (j, i) ∈ N2 and the numbers sj,i are the children of the parent number qj. The
figure below illustrates these relationships, with the number 1 as the ancestor of all odd
numbers.

1

5 21 85 ...

3 13 ... 113 453 ...

17 69 ... 75 301 ...

11 45 ... 401 1605 ...

...

...

Figure 5. Tree of odd numbers

Since s0,0 = 4
3
× 1 × 40 − 1

3
= 1, the number 1 is its own parent, and numbers such as

21, 3, 453, 69, 75, . . . , since they are in 6N+ 3, do not have any child numbers.

5 Conclusion

As the first step, we defined the R-Cz sequences, which are the Collatz sequences without
their even terms. As the first essential result, we established that the R-Cz sequences do
not exhibit any cycles other than the cycle of length 1 and value (1). We then studied their
properties in the case where they converge, particularly highlighting their tree structure,
which can be viewed either as a collection of sequences converging to the penultimate
terms and then to the root, or as the descendants generated through the Pt-sequences.
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This led us to establish Theorem 3.5, which constitutes the central result of Section 3.
Then, the consequences that can be inferred from this theorem, when combined with the
fact that no sequence has any cycle other than the trivial one, gave rise to a contradiction
regarding the set Rd

Cz, which is supposed to contain all divergent R-Cz sequences.

Finally, this contradiction could only be resolved through the realization that D is empty,
leading to the conclusion that all R-Cz sequences converge to 1. The main steps of
the proof can be represented graphically as follows, where the black arrows indicate the
mathematical implications.

Reformulation
of the sequences:
R-Cz sequences

Structure
of convergent

R-Cz sequences

Non-convergent
R-Cz sequences

Cycle 1 as
unique cycle of
R-Cz sequences

And

Coherence
of convergent

R-Cz sequences

Divergent
R-Cz sequences

And

All R-Cz
sequences
converge

All Collatz
sequences
converge

Figure 6. Diagram of the proof

Since an R-Cz sequence is derived from a Collatz sequence by removing its even terms,
the fact that all R-Cz sequences converge to 1 demonstrates that all Collatz sequences
eventually reach the cycle (1, 4, 2). This completes the proof of the Collatz conjecture.
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6 Appendix

6.1 General term of the sequence {vpl }

We know that the formula is valid for the third term in the sequence. Suppose that for
l < L, where L ≥ 2:

vpl =
3l(3p+ 1) +

∑l−1
i=0

(
3l−1−i · 2

∑i
j=0 αj

)
2
∑l

i=0 αi

And calculate vpl+1 as a function of vpl :

vl+1 =
3vpl + 1

2αl+1
=

3

(
3l(3p+1)+

∑l−1
i=0

(
3l−1−i·2

∑i
j=0 αj

)
2
∑l

i=0
αi

)
+ 1

2αl+1

And we get:

vl+1 =
3l+1(3p+ 1) +

∑l
i=0

(
3l−i · 2

∑i
j=0 αj

)
2
∑l+1

i=0 αi

Therefore, for all l ∈ N∗:

vpl =
3l(3p+ 1) +

∑l−1
i=0

(
3l−1−i · 2

∑i
j=0 αj

)
2
∑l

i=0 αi

□

6.2 Classes of penultimate terms

The fact that the penultimate term vnbp = 22n−1
3

, where n ∈ N∗, n = 3k + a and k ∈ N,
lies in 6N+ 3, 6N+ 1 or 6N+ 5 depends on whether a = 0, a = 1 or a = 2.

First case a = 0

The penultimate term
(
vnbp =

22(3k)−1
3

)
∈ 6N+ 3, if there exists k′ ∈ N such that 26k−1

3
=

3 + 6k′, which is equivalent to:

26k−1 − 5 ≡ 0 (mod 9)

For k = 1, 25 − 5 = 27 ≡ 0 (mod 9), and suppose that for k = k0, where k0 ∈ N∗ \ {1},
we have 26k0−1 − 5 ≡ 0 (mod 9).
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Then, for k = k0 + 1, we have:

26(k0+1)−1 − 5 ≡
(
26k0−1 − 5

)
+ 63 · 26k0−1 ≡ 0 (mod 9)

Therefore, for all k ∈ N∗, 22(3k)−1
3

∈ 6N+ 3.

Second case a = 1

The penultimate term
(
vnbp =

22(3k+1)−1
3

)
∈ 6N+1, if there exists k′ ∈ N such that 26k+2−1

3
=

1 + 6k′, which is equivalent to:

26k+1 − 2 ≡ 0 (mod 9)

For k = 0, 2− 2 ≡ 0 (mod 9), for k = 1, 27 − 2 ≡ 126 ≡ 0 (mod 9), and suppose that for
k = k0, where k0 ∈ N∗ \ {1}, 26k0+1 − 2 ≡ 0 (mod 9).

Then, for k = k0 + 1 we have:

26(k0+1)+1 − 2 ≡ (26k0+1 − 2) + 63 · 26k0+1 ≡ 0 (mod 9)

Therefore, for all k ∈ N, 22(3k+1)−1
3

∈ 6N+ 1.

Third case a = 2

The penultimate term
(
vnbp =

22(3k+2)−1
3

)
∈ 6N+5, if there exists k′ ∈ N such that 26k+4−1

3
=

5 + 6k′, which is equivalent to:

26k+3 − 8 ≡ 0 (mod 9)

For k = 0, 8− 8 ≡ 0 (mod 9), for k = 1, 29 − 8 ≡ 504 ≡ 0 (mod 9), and suppose that for
k = k0, where k0 ∈ N∗ \ {1}, 26k0+3 − 8 ≡ 0 (mod 9).

Then, for k = k0 + 1 we have:

26(k0+1)+3 − 8 ≡ (26k0+3 − 8) + 63 · 26k0+3 ≡ 0 (mod 9)

Therefore, for all k ∈ N, 22(3k+2)−1
3

∈ 6N+ 5. □

6.3 Classes of preceding terms

We are going to demonstrate that the term vpi of the R-Cz sequence {vpl }, when it is
preceded by terms (i.e., when it is in 6N + 1 or 6N + 5), they are alternately in 6N + 1,
6N+ 3 and 6N+ 5.

First case vpi ∈ 6N∗ + 1

Since vpi ∈ 6N∗ + 1, its preceding terms are of the form 2αi (6k+1)−1
3

, it follows that:
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• if k ≡ 0 (mod 3), its preceding terms are alternately 6N + 1, 6N + 5 and 6N + 3,
depending on whether αi ∈ 6N+ 2, 6N+ 4 or 6N∗;

• if k ≡ 1 (mod 3), its preceding terms are alternately 6N + 3, 6N + 1 and 6N + 5,
depending on whether αi ∈ 6N+ 2, 6N+ 4 or 6N∗;

• and finally, when k ≡ 2 (mod 3), its preceding terms are alternately 6N+5, 6N+3

and 6N+ 1, depending on whether αi ∈ 6N+ 2, 6N+ 4 or 6N∗.

Because the demonstration is the same for k ≡ 0 (mod 3), k ≡ 1 (mod 3), and k ≡ 2

(mod 3), we will only demonstrate the case k ≡ 1 (mod 3).

For (k, αi) ∈ {(7, 2), (7, 4), (7, 6)}, we have respectively:

22 × 7− 1

3
= 9 ∈ 6N+ 3, αi ∈ 6N+ 2

24 × 7− 1

3
= 37 ∈ 6N+ 1, αi ∈ 6N+ 4

26 × 7− 1

3
= 149 ∈ 6N+ 5, αi ∈ 6N∗

Suppose that for (k, αi) ∈ {(7, 6α0 + 2), (7, 6α0 + 4), (7, 6α0)}, where α0 ∈ N∗, we have
respectively:

26α0+2 × 7− 1

3
∈ 6N+ 3 ⇐⇒ 26α0+1 × 7− 5 ≡ 0 (mod 9)

26α0+4 × 7− 1

3
∈ 6N+ 1 ⇐⇒ 26α0+3 × 7− 2 ≡ 0 (mod 9)

26α0 × 7− 1

3
∈ 6N+ 5 ⇐⇒ 26α0−1 × 7− 8 ≡ 0 (mod 9)

For (k, αi) ∈ {(7, 6(α0 + 1) + 2), (7, 6(α0 + 1) + 4), (7, 6(α0 + 1))}, we have respectively:

26(α0+1)+1 × 7− 5 ≡ (26α0+1 × 7− 5) + 63× 7 ≡ 0 (mod 9)

26(α0+1)+3 × 7− 2 ≡ (26α0+3 × 7− 2) + 63× 7 ≡ 0 (mod 9)

26(α0+1)−1 × 7− 8 ≡ (26α0−1 × 7− 8) + 63× 7 ≡ 0 (mod 9)

Suppose that for (k, αi) ∈ {(6k0 + 1, α1), (6k0 + 1, α2), (6k0 + 1, α3)}, where k0 ∈ 3N∗ + 1

and (α1, α2, α3) ∈ (6N+ 2)× (6N+ 4)× 6N∗, we have respectively:

2α1(6k0 + 1)− 5 ≡ 0 (mod 9)

2α2(6k0 + 1)− 2 ≡ 0 (mod 9)
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2α3(6k0 + 1)− 8 ≡ 0 (mod 9)

For (k, αi) ∈ {(6(k0+3)+1, α1), (6(k0+3)+1, α2), (6(k0+3)+1, α3)}, we have respectively:

2α1(6(k0 + 3) + 1)− 5 ≡ (2α1(6k0 + 1)− 5) + 18× 2α1 ≡ 0 (mod 9)

2α2(6(k0 + 3) + 1)− 2 ≡ (2α2(6k0 + 1)− 2) + 18× 2α2 ≡ 0 (mod 9)

2α3(6(k0 + 3) + 1)− 8 ≡ (2α3(6k0 + 1)− 8) + 18× 2α3 ≡ 0 (mod 9)

Therefore, when vpi is of the form 2αi (6k+1)−1
3

, with k ≡ 1 (mod 3), its preceding terms are
alternately in 6N+ 1, 6N+ 3 and 6N+ 5, depending on whether αi ∈ 6N+ 4, 6N+ 2 or
6N∗.

Second case vpi ∈ 6N+ 5

Since vpi ∈ 6N+ 5, its preceding terms are of the form 2αi (6k+5)−1
3

, it follows that:

• if k ≡ 0 (mod 3), its preceding terms are alternately in 6N+ 3, 6N+ 1 and 6N+ 5,
depending on whether αi ∈ 6N+ 1, 6N+ 3 or 6N+ 5;

• if k ≡ 1 (mod 3), its preceding terms are alternately in 6N+ 1, 6N+ 5 and 6N+ 3,
depending on whether αi ∈ 6N+ 1, 6N+ 3 or 6N+ 5;

• and finally, when k ≡ 2 (mod 3), its preceding terms are alternately in 6N + 5,
6N+ 3 and 6N+ 1, depending on whether αi ∈ 6N+ 1, 6N+ 3 or 6N+ 5.

Because the demonstration is the same for k ≡ 0[3], k ≡ 1[3], and k ≡ 2[3], we will only
demonstrate the case k ≡ 0[3].

For (k, αi) ∈ {(5, 1), (5, 3), (7, 5)}, we have respectively:

21 × 5− 1

3
= 3 ∈ 6N+ 3, αi ∈ 6N+ 1

23 × 5− 1

3
= 13 ∈ 6N+ 1, αi ∈ 6N+ 3

25 × 5− 1

3
= 53 ∈ 6N+ 5, αi ∈ 6N+ 5

Suppose that for (k, αi) ∈ {(5, 6α0+1), (7, 6α0+3), (7, 6α0+5)}, where α0 ∈ N∗, we have
respectively:

26α0+1 × 5− 1

3
∈ 6N+ 3 ⇐⇒ 26α0 × 5− 5 ≡ 0 (mod 9)

26α0+3 × 5− 1

3
∈ 6N+ 1 ⇐⇒ 26α0+2 × 5− 2 ≡ 0 (mod 9)
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26α0+5 × 5− 1

3
∈ 6N+ 5 ⇐⇒ 26α0+4 × 5− 8 ≡ 0 (mod 9)

For (k, αi) ∈ {(7, 6(α0+1)+1), (7, 6(α0+1)+3), (7, 6(α0+1)+5)}, we have respectively:

26(α0+1) × 5− 5 ≡ (26α0 × 5− 5) + 63× 5 ≡ 0 (mod 9)

26(α0+1)+2 × 5− 2 ≡ (26α0+2 × 5− 2) + 63× 5 ≡ 0 (mod 9)

26(α0+1)+4 × 5− 8 ≡ (26α0+4 × 5− 8) + 63× 5 ≡ 0 (mod 9)

Suppose that for (k, αi) ∈ {(6k0 + 5, α1), (6k0 + 5, α2), (6k0 + 5, α3)}, where k0 ∈ 3N∗ + 1

and (α1, α2, α3) ∈ (6N+ 1)× (6N+ 3)× (6N+ 5), we have respectively:

2α1(6k0 + 5)− 5 ≡ 0 (mod 9)

2α2(6k0 + 5)− 2 ≡ 0 (mod 9)

2α3(6k0 + 5)− 8 ≡ 0 (mod 9)

Then for (k, αi) ∈ {(6(k0 + 3) + 5, α1), (6(k0 + 3) + 5, α2), (6(k0 + 3) + 5, α3)}, we have
respectively:

2α1(6(k0 + 3) + 5)− 5 ≡ (2α1(6k0 + 5)− 5) + 18 · 2α1 ≡ 0 (mod 9)

2α2(6(k0 + 3) + 5)− 2 ≡ (2α2(6k0 + 5)− 2) + 18 · 2α2 ≡ 0 (mod 9)

2α3(6(k0 + 3) + 5)− 8 ≡ (2α3(6k0 + 5)− 8) + 18 · 2α3 ≡ 0 (mod 9)

Therefore, when vpi is of the form 2αi (6k+5)−1
3

, with k ≡ 0 (mod 3), its preceding terms are
alternately in 6N+ 3, 6N+ 1 and 6N+ 5, depending on whether αi ∈ 6N+ 1, 6N+ 3 or
6N+ 5. □

6.4 Existence of c in Lemma 3.7

For all (k0, k1) ∈ IPt × IPt, we have:

sk1,0 − sk0,0 =

k1−1∑
j=k0

qj+1β
qj+1 − qjβ

qj = εk1 +

k1−1∑
j=k0

β(a)k(qj+1 − qj)

Where εk1 ∈ R is a correction factor. Now, considering that for all k ≥ K, β(a)k ≤ 1 and
the Pt-sequences do not intersect or overlap, we obtain, after subtracting the term ok0,k1
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from the previous equation:

εk1 − ok0,k1 +

k1−1∑
j=k0

β(a)k(qj+1 − qj) ≤ ck1(k1 − k0)

Where ck1 ≥ 2. If for all L ∈ N∗, there existed k1 such that ck1 > L, this would contradict
our hypothesis that for all k ≥ K, β(a)k ≤ 1, which implies that the distance of Definition
3.6 between two successive Pt-sequences is necessarily bounded. Therefore, there exists
c ≥ 2 such that for all k1, ck1 ≤ c. □

6.5 Empty spaces creation in the proof of Theorem 3.5

Under the hypothesis of the proof of Theorem 3.5, we will demonstrate that, regardless of
the number of Pt-sequences generated, the creation of empty spaces is an endless process.

Unbounded empty spaces
Considering that C is discrete, and that new empty spaces are formed by subdividing
previous ones into which terms are inserted, the creation of new empty spaces could only
cease if their size became bounded. However, such a scenario cannot occur. Indeed, first
by Lemma 3.4, for all (j, i) ∈ N2 (to simplify, here IPt = N), we have:

sj,i =

2
3
qj · 4i − 1

3
if qj ∈ 6N+ 5

4
3
qj · 4i − 1

3
if qj ∈ 6N+ 1

Where qj is the parent term of the Pt-sequence {sj,i}. Let fj = βqj, where β = 2
3

or 4
3

depending on whether qj ∈ 6N+ 5 or 6N+ 1.

Then, as we have assumed that for all K ∈ N, there exists k ≥ K such that β(a)k > 1,
according to Lemma 3.6, the sequence {fj}j∈N grows on average exponentially.

Let {sj,i}0≤j≤J , with J > 0, be the family of the first J Pt-sequences ordered by their first
term in ascending order. Then we have:

s0,0 < s1,0 < · · · < sJ,0

Given that no Pt-sequence shares terms with another, there exists a sequence {(ln, kn)}n∈N
such that:

{sl0,k0 , sl1,k1 , . . . , sln,kn , . . . } =
J⋃

j=0

{sj,i}

And such that:
sl0,k0 < sl1,k1 < · · · < sln,kn < · · ·
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Finally, since for all (j, i) ∈ {0, . . . , J − 1} × N,sj+1,i − sj,i = 4i(fj+1 − fj), and for all
(j, i) ∈ {0, . . . , J}×N, sj,i+1 = 4sj,i + 1, it follows that the sequence {sln,kn}n∈N grows on
average exponentially.

Hence, for all L ∈ N∗, there exist (x, y) ∈ N2 with x+1 = y, such that
]
slx,kx , sly ,ky

[
∩ C =

∅, and such that:
sly ,ky − slx,kx − 1 > L

Therefore, as J can be taken arbitrarily large, no matter how many Pt-sequences are
generated, there will always be empty spaces, at every level of the tree structure, whose
size remains unbounded.

Cardinality
Let Ez be the set of empty spaces created from level 1 to z. At level 1, E1 contains an
infinite number of empty spaces, located between the penultimate terms. From level 2,
and for subsequent levels, starting from level 2, two phenomena occur:

• the predominantly rightward shift of the Pt-sequences may prevent further subdi-
vision of some empty spaces;

• as demonstrated above, there are infinitely many empty spaces of unbounded size.

Consequently, from level 2, depending on the Pt-sequences generated, each empty space
can undergo one of four possible outcomes: either it ceases to be subdivided and has no
descendants, or its size is reduced because terms of Pt-sequences are inserted at its edges,
or it is subdivided into at least two parts, or finally, it remains unchanged and becomes
its own descendant (i.e., it is present at the next level).

For all z ≥ 2, let:

• Ens
z be the set of empty spaces that cease to be subdivided at level z, due to the

rightward shift of the Pt-sequences;

• Esub
z be the set of empty spaces resulting from subdivision of empty spaces at level

z − 1;

• and finally let Efix
z and Ered

z be the sets of empty spaces that are respectively un-
changed or reduced relative to level z − 1.

Then we have:

Ez =
z−1⋃
i=2

Ens
i ∪ Esub

z ∪ Efix
z ∪ Ered

z

Considering that at each level z ≥ 2, infinitely many Pt-sequences are generated, whose
terms grow exponentially, and there are infinitely many empty spaces of arbitrary size, it
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follows that at each level z, infinitely many of these empty spaces will be subdivided, at
least into two parts, giving rise to infinitely many new empty spaces.

Therefore, without taking into account the other sets, we conclude, under the hypothesis
of the proof of Theorem 3.5, that the creation of empty spaces is an endless process,
ensuring that the branching structure of the tree keeps growing indefinitely. □

Remark 6.1. If we were to suppose that the size of the empty spaces becomes bounded,
then the Pt-sequences would cease to move further apart from each other. As a result,
there would exist K ∈ N such that for all k ≥ K, β(a)k ≤ 1, which would contradict the
hypothesis itself and render Theorem 3.5 trivially true.

6.6 Interdependencies between proofs of mathematical statements

The figure bellow shows the interdependencies between proofs of lemmas, theorems and
propositions.

Lemma
3.1

Theorems
3.1 to 3.2

Theorems
2.1 to 2.3

Lemma
3.2

Theorem
3.4

Lemmas
3.3 to 3.6

Theorem
3.5

Lemma
3.7

Theorem
3.6

Theorem
3.7

Theorem
4.1

Theorem
4.2

Proposition 4.2
combinatorial

Proposition
4.1

Theorem
3.3

Proposition 4.2
set-theoretic

Theorem
4.3

Theorem
3.4

Theorem
1.1

Figure 7. Interdependencies between proofs of mathematical statements

7 Glossary

N : N ∪ {−1}.
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{vpl }l∈N : R-Cz sequence whose first term is vp−1 = p.

αi: 2 raised to the power of αi, such that vpi =
3vpi−1 + 1

2αi
is odd.

RCz, R
c
Cz, R

d
Cz: sets containing all R-Cz sequences, all convergent R-Cz sequences, and all

divergent R-Cz sequences, respectively.

C: set of the terms of all convergent R-Cz sequences.

D: complement of C in 2N+ 1.

{bi}i≥0: sequence of the penultimate terms, ordered in ascending order.

{sj,i}(j,i)∈IPt×N : family of the Pt-sequences corresponding to all convergent R-Cz se-
quences. Each sequence contains the preceding terms of the parent term qj.

βqj : shift factor of the parent term qj.

β(a)k: average shift factor of the first k + 1 Pt-sequences.

RD
i : interval [ai, bi] in D.

RD: set of RD
i intervals.

d(a)k: average distance between two consecutive Pt-sequences, among the first k + 1 Pt-
sequences (see Definition 3.6).

{dpl }l∈N: divergent R-Cz sequence.

{dpik}k∈N: strictly increasing subsequence of the divergent R-Cz sequence {dpl }.

Tes: tree of the empty spaces of the proof of Theorem 3.5.

T dpk : tree associated with the term dpk of the divergent R-Cz sequence {dpl }.

T d: tree of the divergent R-Cz sequences.
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