Big Improvement at Nuclear Astrophysics

Authors: George Rajna

In nature, the nuclear reactions that form stars are often accompanied by astronomically high amounts of energy, sometimes over billions of years. [27] Dark matter halos are theoretical bodies inside which galaxies are suspended; the halo's mass dominates the total mass. [26] An international team of researchers extended their results from a previous study to directly measure the cosmic-ray all-electron (electron + positron) spectrum in an energy range from 11 GeV to 4.8 TeV with the Calorimetric Electron Telescope (CALET). [25] Mysterious radiation emitted from distant corners of the galaxy could finally be explained with efforts to recreate a unique state of matter that blinked into existence in the first moments after the Big Bang. [24] Researchers at Oregon State University have confirmed that last fall's union of two neutron stars did in fact cause a short gamma-ray burst. [23] Quark matter – an extremely dense phase of matter made up of subatomic particles called quarks – may exist at the heart of neutron stars. [22] When a massive astrophysical object, such as a boson star or black hole, rotates, it can cause the surrounding spacetime to rotate along with it due to the effect of frame dragging. [21] Rotating black holes and computers that use quantum-mechanical phenomena to process information are topics that have fascinated science lovers for decades, but even the most innovative thinkers rarely put them together. [20] If someone were to venture into one of these relatively benign black holes, they could survive, but their past would be obliterated and they could have an infinite number of possible futures. [19] The group explains their theory in a paper published in the journal Physical Review Letters—it involves the idea of primordial black holes (PBHs) infesting the centers of neutron stars and eating them from the inside out. [18]

Comments: 30 Pages.

Download: PDF

Submission history

[v1] 2018-08-07 10:18:51

Unique-IP document downloads: 0 times is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus